Image Data Interpolation Based on Adaptive Triangulation

  • ;
  • 이정식 (군산대 전자정보공학부) ;
  • 황재정 (군산대학교 전자정보공학부)
  • Xu, Huan-Chun (School of Electronics & Information Eng., Kunsan National University) ;
  • Lee, Jung-Sik (School of Electronics & Information Eng., Kunsan National University) ;
  • Hwang, Jae-Jeong (School of Electronics & Information Eng., Kunsan National University)
  • 발행 : 2007.08.31

초록

This paper proposes a regional feature preserving adaptive interpolation algorithm for natural images. The algorithm can be used in resolution enhancement, arbitrary rotation and other applications of still images. The basic idea is to first scan the sample image to initialize a 2D array which records the edge direction of all four-pixel squares, and then use the array to adapt the interpolation at a higher resolution based on the edge structures. A hybrid approach of switching between bilinear and triangulation-based interpolation is proposed to reduce the overall computational complexity. The experiments demonstrate our adaptive interpolation and show higher PSNR results of about max 2 dB than other traditional interpolation algorithms.

키워드

참고문헌

  1. R. Keys, 'Cubic Convolution Interpolation for Digital Image Processing,' IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 6, pp. 1153-1160, June 1981 https://doi.org/10.1109/TASSP.1981.1163711
  2. B. Ayazifar and J. S. Lim, 'Pel-adaptive model-based interpolation of spatially subsampled images,' in Proc. IEEE Int. Conf. Accoustics, Speech, Signal Processing, vol. 3, pp. 181-184, 1992
  3. B. S. Morse and D. Schwartzwald, 'Isophote-based interpolation,' in Proc. IEEE Int. Conf. Image Processing, vol. 3, pp.227-231, 1998
  4. K. Ratakonda and N. Ahuja, 'POCS based adaptive image magnification,' in Proc. IEEE Int. Conf. Image Processing, vol. 3, pp. 203-207, 1998
  5. D. Calle and A. Montanvert, 'Superresolution inducing of an image,' in Proc. IEEE Int. Conf. Image Processing, vol. 3, pp. 232-235, 1998
  6. S. A. Martucci, 'Image Resizing in the Discrete Cosine Transform Domain,' in Proc. Int. Conf. Image Processing, vol. 2, pp. 244-247, 1995 https://doi.org/10.1109/ICIP.1995.537460
  7. E. Shinbori and M. Takagi, 'High Quality Image Magnification Applying the Gerchberg-Papoulis Iterative Algorithm with DCT,' Systems and Computers in Japan, vol. 25, No. 6, pp. 80-90, 1994 https://doi.org/10.1002/scj.4690250609
  8. S. Carrato, G. Ramponi and S. Marsi, 'A Simple Edge-Sensitive Image Interpolation Filter,' Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 3, pp. 711-714, 1996
  9. K. Jensen and D. Anastassiou, 'Subpixel edge localization and theinterpolation of still images,' IEEE Trans. on Image Processing, vol. 4, pp. 285-295, Mar. 1995 https://doi.org/10.1109/83.366477
  10. J. Allebach and P. W. Wong, 'Edge-directed interpolation,' in Proc. IEEE Int. Conf. Image Processing, vol. 3, pp.707-710, 1996 https://doi.org/10.1109/ICIP.1996.560768
  11. X. Li and M. T. Orchard, 'New Edge-Directed Interpolation,' in Proc. IEEE Int. Conf. Image Processing, vol. 2, pp. 311-314, 2000
  12. S. Battiato, G. Gallo, F. Stanco, 'A locally-adaptive zooming algorithm for digital images,' Image and Vision computing, vol. 20, no. 11, pp. 805-812, Sep. 2002 https://doi.org/10.1016/S0262-8856(02)00089-6
  13. D. A. Floencio and R. W. Schafer, 'Post-sampling aliasing control for natural images,' in Proc. IEEE Int. Conf. Acoustics, Speddch, Signal Processing, vol. 2, pp. 893-896, 1995
  14. X. Yu, B. Morse, T. W. Sederberg, 'Image Reconstruction Using Data-Dependent Triangulation', IEEE Computer Graphics and Applications, vol. 21, no. 3, pp. 62-68, 2001
  15. N. Dyn, D. Levin, S. Rippa, 'Data Dependent Triangulations for Piecewise Linear Interpolation,' IMA Journal of Numerical Analysis, Institute of Mathematics and its Applications, vol.10, pp. 127-154, 1990
  16. D. Su and P. Willis, 'Image Interpolation by Pixel Level Data-Dependent Triangulation' in Computer Graphics Forum, pp. 1-13, Jan. 2004