ECMA UWB AAS 시스템의 전송률 향상을 위한 보완 빔 방법

Complementary Beamforming Method Increasing Throughput in ECMA UWB AAS Systems

  • 발행 : 2007.08.31

초록

본 논문은 ECMA(European Computer Manufacturers Association) 표준의 MB-OFDM(MultiBand-Orthogonal Frequency Division Multiplexing) UWB 시스템에 AAS(Adaptive Antenna Systems)를 적용함으로써 데이터 전송범위를 확장하는 방법을 제안하고, ECMA UWB 시스템의 다중 접속 방법으로 사용되는 CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) 환경에서 AAS를 적용할 때 발생하는 음영 빔 문제를 해결하기 위해 보완 빔 형성 방법을 제안한다. 제안된 보완 빔은 그람-슈미츠(Gram-Schmidt) 직교화 방법을 이용하여 주 빔에 간섭을 주지 않고 빔 음영 지역의 노드들이 채널의 사용 유무를 감지할 수 있도록 하였으며, 주 빔을 형성할 때 다양한 빔 형성 알고리즘의 적용이 가능한 장점이 있다. 전산 모의실험을 통하여 제안된 AAS 및 보완 빔 방법이 480Mbps 데이터 전송 속도의 데이터 전송 범위를 2m에서 3.95m로 증가시키고, 일반적인 ECMA UWB AAS 시스템에 비해 시스템 전송률을 약 20%정도 향상시키는 것을 확인하였다.

In this paper, the extension method of data transmission range as adapting AAS(Adaptive Antenna Systems) in ECMA(European Computer Manufacturers Association) standard MB-OFDM(MultiBand-Orthogonal Frequency Division Multiplexing) UWB systems is proposed, and the complementary beamforming method which can solve hidden beam problem when we adapt AAS in CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) systems is proposed. To design the complementary beamforming, Gram-Schmidt orthogonalization is utilized, whose beam pattern exhibits perfect nulling at the main beam angles and provides uniform power for detection of channel utilization out of main beam. The proposed method can be utilized with any arbitrary beamforming when we make main beamforming. Through computer simulation, it can be shown that proposed AAS and complementary beamforming increase data transmission range from 2m to 3.95m in 480Mbps data transmission system and increase throughput about 20% as compared with general UWB AAS systems.

키워드

참고문헌

  1. Standard ECMA-368, 'High Rate Ultra Wideband PHY and MAC Standard', Dec. 2005
  2. J. Del Prado Pavon, S. Shankar N, V. Gaddam, K. Challapali and C. Chou, 'The MBOA-WiMedia specification for ultra wideband distributed networks',IEEE Communications Magazine, vol. 44, pp. 128–134, Jun. 2006
  3. X. Peng, K. Png, V. Srivastava and F. Chin, 'High rate UWB transmission with range extension', Proc. of IEEE ICU 2005, pp. 741–746, Sep. 2005
  4. M. Sánchez, T. Giles and J. Zander, 'CSMA/CA With Beam Forming Antennas In Multi-Hop Packet Radio', Proc. of the Swedish Workshop on Wireless Ad-Hoc Networks, Mar. 2001
  5. V. Tarokh, Y. Choi and S. Alamouti, 'Complementary beamforming', Proc. of IEEE Veh. Technol. Conf., Orlando, FL, pp. 3136–3140, Oct. 2003
  6. Y. Choi, S. Alamouti and V. Tarokh, 'Complementary beamforming: new approaches', IEEE Transactions on Communications, vol. 54, pp. 41–50, Jan. 2006
  7. B. Widrow, P. E. Mantey, L. J. Griffiths and B. B. Goode, 'Adaptive antenna systems', Proc. of IEEE, vol. 55, no. 12, pp. 2143–2159, Dec. 1967
  8. S. Bellofiore, C. A. Balanis, J. Foutz and A. S. Spanias, 'Smart-Antennas Systems for Mobile Communication Networks Part 1: Overview and Antenna Design', IEEE Antenna's and Propagation Magazine, Vol. 44, No. 4, Jun. 2002
  9. L. C. Godara, Smart Antennas, CRC PRESS, pp. 7– 33, 101–147, 2004
  10. A. E. Zooghby, Smart Antenna Engineering, ARTECH HOUSE, pp. 117–161, 2005
  11. Multi-band OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a, IEEE P802.15-03/268r3, Mar. 2004
  12. W. Q. Malik and A. F. Molisch, 'Ultrawideband antenna arrays and directional propagation channels', Proc. of EuCAP 2006, Nov. 2006
  13. Y. Zang, G. R. Hiertz, J. Habetha, B. Otal, H. Sirin and H. Reumerman, 'Towards High Speed Wireless Personal Area Nework - Efficiency Analysis of MBOA MAC', Proc. of International Workshop on Wireless Ad-Hoc Networks 2005 (IWWAN 2005), London, UK, 2005
  14. H. Harada and R. Prasad, Simulation and software radio for mobile communications, Artech house, pp. 271–317, 2002