Deterministic Channel Models for Wireless Communications

  • 발행 : 2007.09.30

초록

최근 컴퓨터 발전에 따라 이동통신용 채널모델로 deterministic방법이 활발히 연구되고 있다. 이 방법은 기존의 stochastic방법과 달리 주어진 환경의 전파전파현상을 물리 이론을 바탕으로 정확하게 예측하는 것을 목적으로 한다. 그러므로 차세대 주파수 환경 분석과 같은 다양하고 새로운 분야에 적용가능하고 연구의 진전에 따라 모델의 정확도 및 신뢰도가 점점 높아지고 있다. 그러므로 본보에서는 현재까지의 연구 결과를 정리하고 방법의 장단점을 논한다.

키워드

참고문헌

  1. H. L. Bertoni, Radio Propagation for Modem Wireless Systems, Prentice Hall, New Jersey, 2000
  2. M.D. Yacoub, Foundations of Mobile Radio Engineering, CRC Press, Bocs Raton, 1993
  3. A. Ishimaru, Wave Propagation and Scattering in Random Media, IEEE Press, Piscataway, 1997
  4. A. Papoulis and A.U. Pillai, Probability, Random Variables and Stochastic Processes, Mc-Graw Hill, Boston, 2002
  5. M.D. Yacoub, 'The $\kappa$-$\mu$ Distribution and the $\eta$-$\mu$ Distribution,' IEEE Antennas and Propagation Magazine, Vol. 49, No. I, PP 68 - 80, Feb. 2007
  6. D.Didascalou,J. Maurer and W.Wiesbeck,' Subway Tunnel Guided Electromagnetic Wave Propagation at Mobile Communications Frequencies,' IEEE Antennas Propagat. Vol. 49, No. 11, PP 1590 - 1596, Nov. 2001 https://doi.org/10.1109/8.964095
  7. A.K. Bhattacharyya, High-Frequency Electromagnetic Techniques, Recent Advances and Applications, Wiley, New York, 1995
  8. R.J. Luebbers, 'Finite Conductivity Uniform GTD Versus Kinfe Edge Diffraction in Prediction of Propagation Path Loss,' IEEE Antennas Propagat. Vol. AP-32, No.1, PP 70 - 76 1596,Jan. 1984
  9. K. Sarabandi, M. D. Casciato, and I. Koh, 'Efficient Calculation of the Field of a Dipole Radiating Above an Impedance Surface,' IEEE Antennas Propagat, Vol. 50, No.9, PP 1222 - 1235 Sept. 2002 https://doi.org/10.1109/TAP.2002.7054733
  10. K.A. Chamberlin, and R.J. Luebbers, 'An Evaluation of Longly-Rice and GTD Propagation Models,' IEEE Antennas Propagat. Vol. AP-30, No. 6, PP 1093 - 1098, Nov. 1982
  11. L.L. Foldy, 'The Multiple Scattering of Waves,' Phys. Rev. Vol. 67 PP 107-119, 1945 https://doi.org/10.1103/PhysRev.67.107
  12. K. Sarabandi, and I. Koh, 'Effect of Canopy-Air Interface Roughness on HF-VHF Wave Propagation in Forest,' IEEE Trans. Antennas Propagat. Vol. 50, No. 2, PP 111 - 121 Feb. 2002 https://doi.org/10.1109/8.997979
  13. M.A. Weissberger, 'An Initial Critical Summary of Models for Predicting the Attenuation of Radio Wvaes by Trees,' Tech. Rep. ESD-TR-81-101, EMC Analysis Center, Annapolis MD USA, 1982
  14. K. Sarabandi, and I. Koh, 'A Complete Physics-Based Channel Parameter Simulation for Wave Propagation in a Forest Environment,' IEEE Trans. Antennas Propagat, Vol. 49, No. 2, PP 260 - 271 Feb. 2001 https://doi.org/10.1109/8.914293
  15. I. Koh, and K. Sarabandi, 'Polarimetric Channel Characterization of Foliage for Performance Assessment of GPS Receivers Under Tree Canopies,' IEEE Trans. Antennas Propagat. Vol. 50, No. 5, PP 713 - 726 May 2002 https://doi.org/10.1109/TAP.2002.1011239
  16. S.A. Torrico, H.L. Bertoni, and R.H. Lang, 'Modeling Tree Effects on Path Loss in a Residential Environment,' IEEE Antennas Propagat. Vol. 46, No. 6, PP 872 - 880 June 1998 https://doi.org/10.1109/8.686776
  17. T. Fugen, J. Maurer, T. Kayser, and W. Wiesbeck, 'Capability of 3-D Ray Tracing for Defining Parameter Sets for the Specification of Future Mobile Communications Systems,' IEEE Antennas Propagat. Vol. 54, No. 11, PP 3125 - 3137, Nov. 2006 https://doi.org/10.1109/TAP.2006.883988
  18. L. Sevgi, C. Uluisik, F. Aklemen, 'A MATLAB-Based Two-Dimensional Parabolic Equation Radiowave Propagation Package,' IEEE Antennas and Propagation Magazine, Vol. 47, No. 4, PP 164 - 175, Aug. 2005
  19. J.J. Simpson, and A. Taflove, 'A Review of Progress in FDID Maxwell's Equations Modeling of Impulsive Subionospheric Propagation Below 300kHz,' IEEE Antennas Propagat. Vol. 55, No. 6, PP 1582 - 1590,June 2007 https://doi.org/10.1109/TAP.2007.897138
  20. Y. Wang S.N. Safieddin and S.K. Chaudhuri, 'A Hybrid Technique Based on Combining Ray Tracing and FDID Methods for Site-Specific Modeling of Indoor Radio Wave Propagtion,' IEEE Antennas Propagat. Vol. 48, No. 5, PP 743 - 754, May 2000 https://doi.org/10.1109/8.855493