Cited by
- Enhancing the Satisfaction Value of User Group Using Meteorological Forecast Information: Focused on the Precipitation Forecast vol.13, pp.11, 2013, https://doi.org/10.5392/JKCA.2013.13.11.382
DOI QR Code
Decision tree is one of the most useful analysis methods for various data mining functions, including prediction, classification, etc, from massive data. Decision tree grows by splitting nodes, during which the purity increases. It is needed to stop splitting nodes when the purity does not increase effectively or new leaves does not contain meaningful number of records. Pruning is done if a branch does not show certain level of performance. By pruning, the structure of decision tree is changed and it is implied that the previous splitting of the parent node was not effective. It is also implied that the splitting of the ancestor nodes were not effective and the choices of attributes and criteria in splitting them were not successful. It should be noticed that new attributes or criteria might be selected to split such nodes for better tries. In this paper, we suggest a procedure to modify decision tree by Fuzzy theory and splitting as an integrated approach.
의사결정나무는 대량의 데이터를 몇 개의 집단으로 분류하고, 미래상황을 예측하기 위해 자주 사용되는 분석기법 중의 하나이며, 각 노드에서 분할이 일어나면서 자라게 되고, 각 노드에 속하는 자료의 순수도가 효과적으로 증가하도록 진행된다. 또한 의사결정나무를 생성하는 과정에서 필요 이상의 가지(leaves)를 갖게 되면 노드의 분할을 정지하거나, 분류성능 향상에 큰 도움이 되지 못하는 가지를 잘라내게 된다. 이러한 가지치기의 결과로 의사결정나무의 형태가 변하게 되는데 이는 기존의 가지분할이 효율적이지 않았음을 의미하는 것이다. 본 연구에서는 가지치기의 교정뿐 아니라 새로운 분할과정을 혼합한 우수한 의사결정나무 추출 방법을 제안한다. 특히, 새로운 분할 노드의 선택에 있어 퍼지이론을 적용하여 분할의 효과성을 제고할 수 있는 방법을 제시하고자 한다.