DOI QR코드

DOI QR Code

얼음 물질을 이용한 미래 에너지와 지구 온난화 처리 방안

Strategy for Solving Future Energy and Global Warming Using Icy materials

  • 신규철 (한국과학기술원 생명화학공학과) ;
  • 이흔 (한국과학기술원 생명화학공학과)
  • Shin, Kyu-Chul (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Huen (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 발행 : 2007.06.30

초록

낮은 온도와 높은 압력에서 저분자량의 가스가 물분자들에 의해 만들어지는 격자 속으로 포집되면서 형성되는 가스하이드레이트에 대한 존재가 알려진 것은 비교적 오래 되었으나, 물과 가스에 의해 형성되어 진다는 점에서 최근 관심이 증가되고 있다. 포집되는 가스의 종류에 따라 독특한 특성을 가지고 각각의 구조 결정을 형성하는 하이드레이트는 최근 지구 온난화가스인 이산화탄소 문제와 다양한 에너지원, 특히 천연가스와 수소 에너지에 대한 연구로 크게 주목받고 있다. 따라서 본 고에서는 가스 하이드레이트 활용 분야 중에서 활발히 진행되고 있는 분야, 즉 대표적 지구온난화 가스인 이산화탄소의 심해저장과 동시에 메탄 하이드레이트 층으로부터의 천연 가스의 포집연구와 수소 저장량을 극대화시킨 수소하이드레이트에 관한 전반적인 연구동향을 소개하도록 한다.

Gas hydrates are known to form by physical interactions between host water and guest gas molecules and thus can be treated as a special type of icy materials. The gas hydrates are recently highlighted because of their use to future energy source even though they were discovered naturally in the deep-sea marine sediments a long time ago. However, the present and future urgent task is to develop the efficient and safe production technology for recovering methane from gas hydrates. Here, we propose one of potential recovery processes using swapping phenomenon occurring between gaseous carbon dioxide and methane hydrate deposits. Such a swapping process provide several technological and economical advantages over conventional processes. The carbon dioxide can be directly sequestered into methane hydrate layer and simultaneously methane can be produced with a high recovery rate more than 90%. In addition, the icy powders can be effectively used as a new medium for storing hydrogen. To increase hydrogen storage capacity the icy hydrate networks need to be redesigned to create the more empty cages in which hydrogen gas can be enclathrated. Functionalized icy materials might be used in a variety of energy and environmental fields.

키워드

참고문헌

  1. Aya I, Yamane K, Nariai H (1997) Solubility of $CO_{2}$ and density of $CO_{2}$ hydrate at 30 MPa. Energy 22: 263 https://doi.org/10.1016/S0360-5442(96)00093-X
  2. Davison DW, El-Defrawy MK, Fuglem MO, Judge AS (1983) Proceedings of 3rd International Conference on Permafrost 1: 938-943
  3. Davidson DW, Ripmeester JA (1984) In Inclusion Compounds; Atwood JL, Davies JED. MacNichol DD Eds. Academic Press vol 3: Chapter 3
  4. Davidson DW, Handa YP, Ripmeester JA (1986) Xe-129 NMR and the thermodynamic parameters of xenon hydrate. J Phys Chem 90: 6549 https://doi.org/10.1021/j100282a026
  5. Dharmawardhana PB, Parrish WR, Sloan ED (1980) Experimental thermodynamic parameters for the prediction of natural gas hydrate dissociation conditions. Ind Eng Chem Fundam 19: 410 https://doi.org/10.1021/i160076a015
  6. Florusse LJ, Peters CJ, Schoonman J, Hester KC, Koh CA, Dec SF, Marsh KN, Sloan ED (2004) Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 306: 469 https://doi.org/10.1126/science.1102076
  7. Herzog H (1998) Ocean Sequestration of $CO_{2}$: An Overview. 4th International Conference on Greenhouse Gas Control Technologies, Interlaken, Switzerland, August 30-September 2
  8. Houghton JT, Meira Fildo LG, Collander BA, Harris N, Kattenberg A, Maskell K (1996) Climate Change 1995: The Science of Climate Change. Bambridge University Press, Cambridge, UK
  9. IEA GHG (1999) Ocean Storage of $CO_{2}$, IEA Greenhouse Gas R&D Programme
  10. Jeffrey GA, McMullan RK (1967) Progress Inorganic Chemistry 8: 43 https://doi.org/10.1002/9780470166093.ch2
  11. Kawamura T, Komai T, Yamamoto Y, Nagashima K, Ohga K, Higuchi K (2002) Growth kinetics of $CO_{2}$ hydrate just below melting point of ice. J Cryst Growth 234: 220 https://doi.org/10.1016/S0022-0248(01)01639-6
  12. Komai T, Kawamura T, Kang S, Nagasima K, Yamamoto Y (2002) In-situ observation of gas hydrate behaviour under high pressure by Raman spectroscopy. J Phys: Condens Matter 14: 11395-11400 https://doi.org/10.1088/0953-8984/14/44/488
  13. Lee H, Seo Y, Seo YT, Moudrakovski IL, Ripmeester JA (2003) Recovering methane from solid methane hydrate with carbon dioxide. Angew Chem Int Ed 42: 5048-5051 https://doi.org/10.1002/anie.200351489
  14. Lee H, Lee JW, Kim DY, Park J, Seo YT, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA (2005) Tuning clathrate hydrates for hydrogen storage. Nature 434: 743 https://doi.org/10.1038/nature03457
  15. Lelieveld J, Crutzen PJ (1992) Indirect chemical effects of methane on climate warming. nature 355: 339-342 https://doi.org/10.1038/355339a0
  16. Mak TCW, McMullan RK (1965) 98 polyhedral clathrate hydrates. X. Structure of double hydrate of tetrahydrofuran and hydrogen sulfide. J Chem Phys 42: 2732 https://doi.org/10.1063/1.1703229
  17. Mao WL, Mao HK, Goncharov AF, Struzhkin W, Guo QZ, Hu JZ, Shu JF, Hemley RJ, Somayazulu M, Zhao YS (2002) Hydrogen clusters in clathrate hydrate. Science 297: 2247-2249 https://doi.org/10.1126/science.1075394
  18. McMullen RK, Jeffery GA (1965) Polyhedral clathrate hydrates. 9. Structure of ethylene oxide hydrate. J Chem Phys 42: 2725 https://doi.org/10.1063/1.1703228
  19. Mehta AP, Sloan ED (1996) Proceedings of 2nd International Conference on Natural Gas Hydrates
  20. Ohgaki K, Takano K, Moritoki M (1994) Exploitation of $CH_{4}$ hydrates under the Nankai trough in combination with $CO_{2}$ storage. Kagaku Kogaku Ronbunshu 20: 121-123 https://doi.org/10.1252/kakoronbunshu.20.121
  21. Park Y, Kim DY, Lee JW, Huh DG, Park KP, Lee J, Lee H (2006) Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates. Proc Natl Acad Sci 103: 12690-12694
  22. Parrish WR, Prausnitz JM (1972) Dissociation pressures of gas hydrates formed by gas-mixtures. Ind Eng Chem Process Des Develop 11: 26 https://doi.org/10.1021/i260041a006
  23. Pohlman JW, Canuel EA, Chapman NR, Spence GD, Whiticar MJ, Coffin RB (2005) The origin of thermogenic gas hhydrates on the northern Cascadia Margin as inferred from isotopic ($^{13}C/^{12}C$ and D/H) and molecular composition of hydrate and vent gas. Organ Geochem 36: 703-716 https://doi.org/10.1016/j.orggeochem.2005.01.011
  24. Ripmeester JA, Tse JS, Ratcliffe CI, Powell BM (1987) A new clathrate hydrate structure. Nature 325: 135 https://doi.org/10.1038/325135a0
  25. Ripmeester JA, Ratcliffe CI (1989) Solid State NMR Studies of Inclusion Compounds. National Research Council of Canada: Report C 1181-895
  26. Ripmeester JA, Ratcliffe CI (1990) Xe-129 NMR-studies of clathrate hydrates - new guests for structure-II and structure -H. J Phys Chem 94: 8773 https://doi.org/10.1021/j100388a006
  27. Ripmeester JA, Ratcliffe CI (1988) Low-temperature crosspolarization magic angle spinning C-13 NMR of solid methane hydrates - structure, cage occupancy, and hydration number. J Phys Chem 92: 337 https://doi.org/10.1021/j100313a018
  28. Ripmeester JA, Ratcliffe CI (1998) The diverse nature of dodecahedral cages in clathrate hydrates as revealed by Xe-129 and C-13 NMR spectroscopy: $CO_{2}$ as a small-cage guest. Energy & Fuels 12: 197 https://doi.org/10.1021/ef970171y
  29. Sassen R, MacDonald IR (1994) Evidence of structure-H hydrate, Gulf of Mexico continental-slope. Organ Geochem 22: 1029-1032 https://doi.org/10.1016/0146-6380(94)90036-1
  30. Seo Y, Lee H (2002) Phase behavior and structure identification of the mixed chlorinated hydrocarbon clathrate hydrates. J Phys Chem B 106: 9668 https://doi.org/10.1021/jp025685z
  31. Sloan ED (1998) Clathrate hydrate of natural gases (2nd edition). Marcel Dekker New York: 705
  32. Sum AK, Burruss RC, Sloan ED (1997) Measurement of clathrate hydrates via Raman spectroscopy. J Phys Chem B 101: 7371 https://doi.org/10.1021/jp970768e
  33. Uchida T, Takagi A, Kawabata J, Mae S, Hondoh T (1995) Raman-spectroscopic analyses on the crowth-process of $CO_{2}$ hydrates. Energy Convers Mgmt 36: 547 https://doi.org/10.1016/0196-8904(95)00064-K
  34. Udachin KA, Lipkowski J (1996) Proceedings of 2nd International Conference on Natural Gas Hydrates: 25-32
  35. Udachin KA, Ratcliffe CI, Ripmeester JA (2001) Structure, composition, and thermal expansion of $CO_{2}$ hydrate from single crystal X-ray diffraction measurements. J Phys Chem B 105: 4200 https://doi.org/10.1021/jp004389o
  36. U.S. Department of Energy, Office of Science, Office of Fossil Energy (1999) Carbon Sequestration: State of the Science, A working paper for road mapping future carbon sequestration R&D