항공 TEM 을 이용한 천해지역에서의 퇴적층 두께 및 기반암 심도 원격탐사에 관하여

Towards remote sensing of sediment thickness and depth to bedrock in shallow seawater using airborne TEM

  • 발행 : 2007.02.28

초록

선행된 연구에서의 성공적인 수심도 작성 예에 뒤이어, 항공전자탐사를 이용한 해저면 특성파악 가능성이 고찰되었다. 헬리콥터에 탑재된 시간영역전자탐사 (TEM) 장비에서 얻어진 자료의 1D 역산으로부터 추정된 퇴적층의 두께가 해양 탄성파 연구에 기초하여 얻어진 추정치와 비교되었다. 일반적으로, 해수의 깊이가 대략 20 m이고 퇴적층의 두께가 40 m 미만이면 퇴적층의 두께 즉 비전도성 기반암까지의 깊이는 두 경우에 있어서 타당한 범위 내에서 일치됨을 보였다. 잡음이 섞인 합성자료의 역산은 초기 모형이 실제모형과 차이가 나는 경우에도 수직 전자탐사 유일성 이론과 일치하게 역산 후 실제모형과 매우 닮은 결과를 보여주었다. 잡음이 섞인 합성자료로부터 얻어진 천해 해수 깊이에 관한 표준편차는 대략 깊이의 ${\Box}5\;%$ 정도였으며, 이는 실제자료의 역산 시 대략 ${\pm}1\;m$ 정도의 오차를 우발할 수 있다. 이에 상응하는 기반암 깊이 추정의 불확실성은 대략 ${\pm}10\;%$에 이른다. 잡음이 포함된 합성자료로부터 얻어진 해수와 퇴적층의 평균 역산 두께는 대략 1 m 정도의 정밀도를 나타냈고, 중합에 의해 정밀도가 향상되었다. 주의 깊게 보정된 항공 TEM 자료를 이용하면 퇴적층의 두께와 기반암의 지형을 조사할 수 있다는 가능성을 알 수 있었으며, 천해에서의 해저면 저항치를 알아내기 위한 방법으로서의 가능성도 보여 주었다.

Following a successful bathymetric mapping demonstration in a previous study, the potential of airborne EM for seafloor characterisation has been investigated. The sediment thickness inferred from 1D inversion of helicopter-borne time-domain electromagnetic (TEM) data has been compared with estimates based on marine seismic studies. Generally, the two estimates of sediment thickness, and hence depth to resistive bedrock, were in reasonable agreement when the seawater was ${\sim}20\;m$ deep and the sediment was less than ${\sim}40\;m$ thick. Inversion of noisy synthetic data showed that recovered models closely resemble the true models, even when the starting model is dissimilar to the true model, in keeping with the uniqueness theorem for EM soundings. The standard deviations associated with shallow seawater depths inferred from noisy synthetic data are about ${\pm}5\;%$ of depth, comparable with the errors of approximately ${\pm}1\;m$ arising during inversion of real data. The corresponding uncertainty in depth-to-bedrock estimates, based on synthetic data inversion, is of order of ${\pm}10\;%$. The mean inverted depths of both seawater and sediment inferred from noisy synthetic data are accurate to ${\sim}1\;m$, illustrating the improvement in accuracy resulting from stacking. It is concluded that a carefully calibrated airborne TEM system has potential for surveying sediment thickness and bedrock topography, and for characterising seafloor resistivity in shallow coastal waters.

키워드

참고문헌

  1. Albani, A. D., Tayton, J. W., Rickwood, P. C., Gordon, A. D., and Hoffman, J. G., 1988, Cainozoic morphology of the inner continental shelf near Sydney, NSW: Journal and Proceedings. Royal Society of New South Wales 121, 11-28
  2. Bennett, R. H., Lambert, D. N., Hulbert, M. H., Burns, J. T., Sawyer, W. B., and Freeland, G. L., 1983, Electrical resistivity/conductivity in seabed sediments: in Geyer, R.A., ed., CRC Handbook of Geophysical Exploration at Sea, CRC Press
  3. Brodie, R. C., Green, A. A., and Munday, T. J., 2003, Calibration of RESOLVEairborne electromagnetic data -Riverland and East Tintinara, South Australia: Open file report 173, Cooperative Research Centre for Landscapes, Environment and Mineral Exploration, accessed 26 October 2006; http://crcleme.org.au/Pubs/OFR171-180/OFR173.pdf
  4. Brodie, R. C., Green, A. A., and Munday, T. J., 2004, Constrained inversion of RESOLVE electromagnetic data - Riverland, South Australia: Open file report 175, Cooperative Research Centre for Landscapes, Environment and Mineral Exploration, accessed 26 October 2006; http://crcleme.org.au/Pubs/OFR171-180/OFR175.pdf
  5. Christensen, A., 2003, Calibration of Honeysuckle Creek conductivity depth imaging. Preview 106, 27-30
  6. Deszcz-Pan, M., Fitterman, D. V., and Labson, V. F., 1998, Reduction of inversion errors in helicopter EM data using auxiliary information. Exploration Geophysics 29, 142-146 https://doi.org/10.1071/EG998142
  7. Fullagar, P. K., 1984, A uniqueness theorem for horizontal loop electromagnetic frequency soundings. Geophysical Journal of the Royal Astronomical Society 77, 559-566 https://doi.org/10.1111/j.1365-246X.1984.tb01949.x
  8. Harris, G. A., Vrbancich, J., Keene, J., and Lean, J., 2001, Interpretation of bedrock topography within the Port Jackson (Sydney Harbour) region using marine seismic reflection: 15th Geophysical Conference and Exhibition, Australian Society of Exploration Geophysicists, Extended Abstracts, 89
  9. Jackson, P. D., Taylor Smith, D., and Stanford, P. N., 1978, Resistivityporosity- particle shape relationships for marine sands. Geophysics 43, 1250-1268. doi: 10.1190/1.1440891
  10. Ley-Cooper, Y., and Macnae, J., 2004, Model consistent amplitude rescaling to correct amplitude calibration problems in HEM data. Exploration Geophysics 35, 277-282 https://doi.org/10.1071/EG04277
  11. Ley-Cooper, Y., Macnae, J., Robb, T., and Vrbancich, J., 2006, Identification of calibration errors in helicopter electromagnetic data through transform to the altitude-corrected phase-amplitude domain. Geophysics 71, G27-G34. doi: 10.1190/1.2187741
  12. Parker, R. L., and McNutt, M. K., 1980, Statistics for the one-norm misfit error. Journal of Geophysical Research 85, 4429-4430 https://doi.org/10.1029/JB085iB08p04429
  13. Vrbancich, J., and Fullagar, P. K., 2004, Towards seawater depth determination using the helicopter HoistEM system. Exploration Geophysics 35, 292-296 https://doi.org/10.1071/EG04292
  14. Vrbancich, J., and Fullagar, P. K., 2006, Improved seawater depth determination using corrected helicopter time domain electromagnetic data. Geophysical Prospecting 55, in press