Multiresidual approximation of Scattered Volumetric Data with Volumetric Non-Uniform Rational B-Splines

분산형 볼륨 데이터의 VNURBS 기반 다중 잔차 근사법

  • Published : 2007.02.28

Abstract

This paper describes a multiresidual approximation method for scattered volumetric data modeling. The approximation method employs a volumetric NURBS or VNURBS as a data interpolating function and proposes two multiresidual methods as a data modeling algorithm. One is called as the residual series method that constructs a sequence of VNURBS functions and their algebraic summation produces the desired approximation. The other is the residual merging method that merges all the VNURBS functions mentioned above into one equivalent function. The first one is designed to construct wavelet-type multiresolution models and also to achieve more accurate approximation. And the second is focused on its improvement of computational performance with the save fitting accuracy for more practical applications. The performance results of numerical examples demonstrate the usefulness of VNURBS approximation and the effectiveness of multiresidual methods. In addition, several graphical examples suggest that the VNURBS approximation is applicable to various applications such as surface modeling and fitting problems.

Keywords

References

  1. Franke, R., 'Scattered Data Interpolation: Tests of Some Methods', Mathematics of Computation, Vol. 38, No. 157, pp. 181-200, 1982 https://doi.org/10.2307/2007474
  2. Nielson, G. M., 'Scattered Data Modeling', IEEE Computer Graphics and Applications, Vol. 12, No. 1, pp. 60-70, 1993
  3. Shepard, D., 'A Two Dimensional Interpolation Function for Irregularly Spaced Data', in Proceedings of ACM 23rd National Conference, pp. 517-524, 1968
  4. Franke, R. and Nielson, G. M., 'Smooth Interpolation of Large Sets of Scattered Data', International Journal of Numerical Methods in Engineering, Vol. 15, pp. 1,691-1,704, 1980
  5. Schaback, R., 'Multivariate Interpolation and Approximation by Translates of a Basis Function', in Approximation Theory VIII, Vol. 1: Approximation and Interpolation, C.K. Chui and L.L. Schumaker (eds.), World Scientific Publishing Co., Inc., Singapore, pp. 491-514, 1995
  6. Wendland, H., 'Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree', Advances in Computational Mathematics, Vol. 4, pp. 389-396, 1995 https://doi.org/10.1007/BF02123482
  7. Hardy, R., 'Multiquadric Equations of Topography and Other Irregular Surfaces', J. Geophysical Research, Vol. 76, No. 8, pp. 1,905-1,915, 1971
  8. Duchon, J., 'Splines Minimizing Rotation-Invariant Semi-Norms in Sobolev Spaces', in Multivariate Approximation Theory, C.K. Chui, L.L. Schumaker, and J.D. Ward (eds.), Basel, Switzerland: Birkhauser, pp. 85-100, 1975
  9. Lawson, C. L., 'Properties of N-dimensional Trian-gulations', Computer Aided Geometric Design, Vol. 3, pp. 231-247, 1986 https://doi.org/10.1016/0167-8396(86)90001-4
  10. Worsey, A. J. and Farin, G. E., 'An N-dimensional Clough-Tocher Interpolant', Constructive Approximation, Vol. 3, pp. 99-110, 1987 https://doi.org/10.1007/BF01890556
  11. Alfeld, P., 'Multivariate Perpendicular Interpolation', SIAM J. Numerical Analysis, Vol. 22, pp. 95-106, 1985 https://doi.org/10.1137/0722006
  12. Gregory, J. A., 'Interpolation to Boundary Data on the Simplex', Computer Aided Geometry Design, Vol. 2, pp. 43-52, 1985 https://doi.org/10.1016/0167-8396(85)90006-8
  13. Alfeld, P., 'A Case Study of Multivariate Piecewise Polynomials', in Geometric Modeling, G. E. Farin (ed.), SIAM Publication, pp. 149-160, 1987
  14. Narcowich, F. J., Schaback, R. and Ward, J. D., 'Multilevel Interpolation and Approximation', Applied and Computational Harmonic Analysis, Vol. 7, pp. 243-261, 1999 https://doi.org/10.1006/acha.1999.0269
  15. Floater, M. S. and Iske, A. 'Multistep Scattered Data Interpolation Using Compactly Radial Basis Functions', Journal of Computational and Applied Mathematics, Vol. 73, pp. 65-78, 1996 https://doi.org/10.1016/0377-0427(96)00035-0
  16. Fasshauer, G. E. and Jerome, J. W., 'Multistep Approximation Algorithms: Improved Convergence Rates through Postconditioning with Smoothing Kernels', Advances in Computational Mathematics, Vol. 10, pp. 1-27, 1999 https://doi.org/10.1023/A:1018962112170
  17. Lee, S., Wolberg, G. and Shin, S. Y., 'Scattered Data Interpolation with Multilevel B-Splines', IEEE Transactions on Visualization and Computer Graphics, Vol. 3, No. 3, pp. 228-244, 1997 https://doi.org/10.1109/2945.620490
  18. Forsey, D. R. and Bartels, 'Hierarchical B-Spline Refinement', Computer Graphics (Proc. SIGGRAPH '88), Vol. 22, No. 4, pp. 205-212, 1988
  19. Forsey, D. R. and Bartels, R. H., 'Surface Fitting with Hierarchical Splines', ACM Trans. On Graphics, Vol. 14, No. 2, pp. 134-161, 1995 https://doi.org/10.1145/221659.221665
  20. 박상근, 'VNURBS기반의 다차원 불균질 볼륨 객체의 표현: 개념 및 형성', 한국CAD/CAM학회 논문집, 제10권, 제5호, pp' 303-313, 2005
  21. 박상근, 'VNURBS기반의 다차원 불균질 볼륨 객체의 표현: 모델링 및 응용', 한국CAD/CAM학회 논문집, 제 10권, 제5호, pp. 314-327, 2005
  22. Turk, G and O'Brien, J., 'Variational Implicit Surfaces', Tech Report GIT-GVU-99-15, Georgia Institute of Technology, 1999
  23. Piegl, L. and Tiller, W., The NURBS Book, Springer-Verlag, 1995
  24. Iske, A., 'Hierarchical Scattered Data Filtering for Multilevel Interpolation Schemes', in Mathematical Methods for Curves and Surfaces: Oslo 2000, T. Lyche and L.L. Schumaker (eds.), Vanderbilt University Press, Nashville, pp. 211-220, 2001