전자파를 이용한 유방암 진단 연구

  • 전순익 (한국전자통신연구원 전파기술연구그룹) ;
  • 이종문 (한국전자통신연구원 전파기술연구그룹) ;
  • 김혁제 (한국전자통신연구원 전파기술연구그룹)
  • Published : 2007.07.31

Abstract

Keywords

References

  1. Committee on Technologies for the Early Detection of Breast Cancer, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer, S. J. Nass, I. C. Henderson, and J. C. Lashof, Eds. National Cancer Policy Board, Institute of Medicine, and Commission on Life Studies, National Research Council, 2001
  2. C. Gabriel, S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey", Phys. Med. Biol., vol. 41, pp. 2231-2249, 1996 https://doi.org/10.1088/0031-9155/41/11/001
  3. S. Gabriel, R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements on the frequency range 10 Hz to 20 GHz", Phys. Med. Biol., vol. 41, pp. 2251-2269, 1996 https://doi.org/10.1088/0031-9155/41/11/002
  4. S. Gabriel, R. W. Lau, and C. Gabriel. "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues", Phys. Med. Biol., vol. 41, pp. 2271-2293, 1996 https://doi.org/10.1088/0031-9155/41/11/003
  5. X. Li, S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection", IEEE Microwave Wireless Components Lett., vol. 11, pp. 130-132, Mar. 2001 https://doi.org/10.1109/7260.915627
  6. S. Mouty, B. Bocquet, R. Ringot, N. Rocourt, and P. Devos, "Microwave radiometric imaging for the characterisation of breast tumors", Eur. Phys. J., Appl. Phys., vol. 10, pp. 73-78, 2000 https://doi.org/10.1051/epjap:2000121
  7. K. L. Carr, P. Cevasco, P. Dunlea, and J. Shaeffer, "Radiometric sensing: An adjuvant to mammography to determine breast biopsy", IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 929-932, 2000
  8. R. A. Kruger, K. K. Kopecky, A. M Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, Jr., "Thermoacoustic CT with radio waves: A medical imaging paradigm", Radiology, vol. 211, pp. 275-278, 1999 https://doi.org/10.1148/radiology.211.1.r99ap05275
  9. R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and R. L. Eisenhart, "Thermoacoustic computed tomography of the breast at 434 MHz", IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 591-594, 1999
  10. L. V. Wang, X. Zho, H. Sun, and G. Ku, "Microwave- induced acoustic imaging of biological tissues," Rev. Sci. Instrum., vol. 70, pp. 3744-3748, 1999 https://doi.org/10.1063/1.1149986
  11. G. Ku, L.V. Wang, "Scanning thermoacoustic tomography in biological tissue," Med. Phys., vol. 27, pp. 1195-1202, 2000 https://doi.org/10.1118/1.598984
  12. P. M. Meaney, M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast", IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1841-1853, Nov. 2000 https://doi.org/10.1109/22.883861
  13. P. M. Meaney, K. D. Paulsen, and M. W. Fanning, "Microwave imaging for breast cancer detection: preliminary experience", Proc. SPIEInt. Soc. Opt. Eng., vol. 3977, pp. 308-319, 2000
  14. A. E. Souvorov, A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, and G. P. Tatsis, "Two-dimensional computer analysis of a microwave flat antenna array for breast cancer tomography", IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1413-1415, Aug. 2000 https://doi.org/10.1109/22.859490
  15. A. E. Bulyshev, S. Y. Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazarov, Y. E. Sizov, and G. P. Tatsis, "Computational modeling of three-dimensional microwave tomography of breast cancer", IEEE Trans. Biomed. Eng., vol. 48, pp. 1053-1056, Sep. 2001 https://doi.org/10.1109/10.942596
  16. S. C. Hagness, A. Taflove, and J. E. Bridges, "Twodimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixedfocus and antenna-array sensors", IEEE Trans. Biomed. Eng., vol. 45, pp. 1470-1479, Dec. 1998 https://doi.org/10.1109/10.730440
  17. S. C. Hagness, A. Taflove, and J. E. Bridges, "Threedimensional FDTD analysis of pulsed microwave confocal system for breast cancer detection: design of an antenna-array element", IEEE Trans. Antennas Propagat., vol. 47, pp. 783-791, May 1999 https://doi.org/10.1109/8.774131
  18. E. C. Fear, M. A. Stuchly, "Microwave detection of breast cancer", IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1854-1863, Nov. 2000 https://doi.org/10.1109/22.883862
  19. E. C. Fear, M. A. Stuchly, "Microwave system for breast tumor detection", IEEE Microwave Guided Wave Lett., vol. 9, pp. 470-472, Nov. 1999 https://doi.org/10.1109/75.808040
  20. X. Li, S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection", IEEE Microwave Wireless Components Lett., vol. 11, pp. 130-132, Mar. 2001 https://doi.org/10.1109/7260.915627
  21. X. Li, S. C. Hagness, " "Biological imaging", IEEE Trans. Biomed. Eng., vol. 43, pp. 869-877, Sep. 1996 https://doi.org/10.1109/10.532121
  22. S. C. Hagness, A. Taflove, and J. E. Bridges, "Twodimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixedfocus and antenna-array sensors", IEEE Trans. Biomed. Eng., vol. 45, no. 12, pp. 1470-1479, Dec. 1998 https://doi.org/10.1109/10.730440
  23. P. M. Meaney, K. D. Paulsen, and T. P. Ryan. "Twodimensional hybrid element image reconstruction for TM illumination", IEEE Trans. Ant. and Prop., vol. 43, pp. 239-247, 1995 https://doi.org/10.1109/8.371992
  24. P. M. Meaney, M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography", Academic Radiology, vol. 14, pp. 207-218, 2007 https://doi.org/10.1016/j.acra.2006.10.016
  25. P. M. Meaney, K. D. Paulsen, M. W. Fanning, and A. Hartov, "Nonactive antenna compensation for fixed-array microwave imaging: Part II-Imaging results", IEEE Trans. Med. Imag., vol. 18, pp. 508-518, Jun. 1999 https://doi.org/10.1109/42.781016