EFFECT OF DI-TERTIARY-BUTYL PEROXIDE ON IGNITION PERFORMANCE IN A COMPRESSION IGNITION NATURAL GAS ENGINE

  • Li, F.C. (State Key Laboratory of Engine Combustion, Tianjin University) ;
  • Zheng, Q.P. (Tianjin Polytechninc University) ;
  • Zhang, H.M. (State Key Laboratory of Engine Combustion, Tianjin University)
  • Published : 2007.08.31

Abstract

Experimental study of additives on the ignition performance of a compression ignition natural gas engine is introduced, followed by results of a simulation of its working mechanism. From the experimental results, it is understood that engine ignition performance can be improved when a certain amount of Di-tertiary-butyl peroxide additive is added. If the mass fraction of Di-tertiary-butyl peroxide additive reaches as high as 14.2%, engine ignition can be realized at ambient temperatures with a glow plug temperature of about $750^{\circ}C$. From the simulation results, we verify that the Di-tertiary-butyl peroxide additive, by cracking its radicals at lower temperature, can accelerate reaction rate. Therefore, the additive is able to improve the ignition performance of natural gas significantly.

Keywords

References

  1. Aslam, M. U., Masjuki, H. H., Kalam, M. A. and Abdesselam, H. (2006). An experimental investigation of CNG as an alternative fuel for a retrofitted gasoline vehicle. Fuel 85, 5-6, 717-724
  2. AVL LIST GmbH (2003). CFD Solver Ver. 8.1.1-User's Guide. A-8020 Graz
  3. Christensen, M., Einewall, P. and Johansson, B. Homogeneous charge compression ignition (HCCI) using isooctane, ethanol and natural gas – A comparison to spark ignition operation. SAE Paper No. 972874
  4. Eng, J. A., Leppard, W. R. and Sloane, T. M. (2003). The effect of di-tertiary butyl peroxide (DTBP) addition to gasoline on HCCI combustion. SAE Paper No. 2003-01-3170
  5. Fowler, T., Lander, D. and Broomhall, D. (1991). Reduced NOx emissions from internal combustion engines fuelled by natural gas. Fuel 70, 4, 499-502 https://doi.org/10.1016/0016-2361(91)90027-8
  6. Goto, S., Lee D. and Wakao, Y. (1999). Development of an LPG DI diesel engine using cetane number enhancing additives. SAE Paper No. 1999-01-3602
  7. Griffiths, J. F. and Phillips, C. H. (1990). Experimental and numerical studies of the combustion of di-tertiary butyl peroxide in the presence of oxygen at low pressures in a mechanically stirred closed vessel. Combustion Flame, 81, 304-316 https://doi.org/10.1016/0010-2180(90)90027-O
  8. Heywood, J. B. (1981). Automotive engines and fuels: A review of future options. Progress in Energy and Combustion Science 7, 3, 155-184 https://doi.org/10.1016/0360-1285(81)90010-1
  9. Hidaka, Y., Kimura, K. and Kawano, H. (1994). High temperature pyrolysis of ketene in shock waves. Combustion Flame, 99, 18-28 https://doi.org/10.1016/0010-2180(94)90079-5
  10. Http://www.me.berkeley.edu/gri_mech/version30
  11. Hultqvist, A. and Johansson, B., Demonstrating the multi fuel capability of a homogeneous charge compression ignition engine with variable compression ratio. SAE Paper No. 2002-01-0214
  12. Hupperich, P. and Duernholzz, M. (1996). Exhaust emissions of diesel, gasoline and natural gas fueled vehicles. SAE Paper No. 960857
  13. Langille, J. A., Pasale, J., Ren, J.-Y., Egolfopoulos, F. N. and Tsotsis, T. T. (2004). Ignition enhancement by in situ generated $C_2$ additives for natural gas practical combustor applications. Chemical Engineering Science 59, 22-23, 5311-5318
  14. Law, D., Allen, J., Kemp, D., Kirkpatrick, G. and Copland, T. (2001). Controlled combustion in an IC-engine with a fully variable valve train. SAE Paper No. 2001-01-0251
  15. Lee, D., Goto, S. and Honma, H. (2000). Chemical kinetic study of cetane number enhancing additive for an LPG DI diesel engine. SAE Paper No. 2000-01-0193
  16. Liss, W. E. (1991). Natural gas as a stationary engine and vehicle fuel. SAE Paper No. 912364
  17. Lu, X.-C., Ji, L.-B., Chen, W. and Huang, Z. (2007). Effect of additive on the heat release rate and emissions of hcci combustion engines fueled with ron90 fuels. Int. J. Automotive Technology 8, 1, 1-7
  18. Naber, J. D., Siebers, D. L., Caton, J. A., Westbrook, C. K. and Di Julio, S. S. (1994). Natural gas autoignition under diesel conditions: Experiments and chemical kinetic modeling. SAE Paper No. 942034
  19. Naber, J. D., Siebers, D. L., Di Julio, S. S. and Westbrook, C. K. (1994). Effects of natural gas composition on ignition delay under diesel conditions. Combustion and Flame 99, 2, 192-200 https://doi.org/10.1016/0010-2180(94)90122-8
  20. Peucheret, S., Wyszyñski, M. L., Lehrle, R. S., Golunski, S. and Xu, H. (2005). Use of catalytic reforming to aid natural gas HCCI combustion in engines: experimental and modelling results of open-loop fuel reforming. Int. J. Hydrogen Energy 30, 5, 1583-1594 https://doi.org/10.1016/j.ijhydene.2005.02.001
  21. Raine, R. R., Zhang, G. and Pflug, A. (1997). Comparison of emissions from natural gas and gasoline fuelled engines. SAE Paper No. 970743
  22. Ricklin, P. U., Kazakov, A. and Dryer, F. L. (2002). The effects of NOx addition on the auto ignition behavior of natural gas under HCCI conditions. SAE Paper No. 2002-01-1746
  23. Silviu, D. and Philip, G. H. (2000). Effects on injection changes on efficiency and emission of a diesel engine fueled by direct injection of natural gas. SAE Paper No. 2000-01-1805
  24. Soylu, S. and Gerpen, J. V. (2003). Development of an autoignition submodel for natural gas engines. Fuel 82, 14, 1699-1707 https://doi.org/10.1016/S0016-2361(03)00147-9
  25. Vilmar, A. (1996). Hot surface assisted compression ignition of natural gas in a direct injection diesel engine. SAE Paper No. 960767
  26. Xu, B. Y., Liang, F. Y., Cai, S. L. and Qi, Y. L. (2005). Numerical analysis of fuel injection in intake manifold and intake process of a mpi natural gas engine. Int. J. Automotive Technology 6, 6, 579-584
  27. Yap, D., Megaritis, A., Peucheret, S. and Wysznski, M. L. (2004). Effect of hydrogen addition on natural gas HCCI combustion. SAE Paper No. 2004-01-1972
  28. Yap, D., Peucheret, S. M., Megaritis, A., Wyszynski, M. L. and Xu, H. (2006). Natural gas HCCI engine operation with exhaust gas fuel reforming. Int. J. Hydrogen Energy 31, 5, 587-595 https://doi.org/10.1016/j.ijhydene.2005.06.002
  29. Zhang, D. and Frankel, S. I. (1998). A numerical study of natural gas combustion in a lean burn engine. Fuel 77, 12, 1339-1347 https://doi.org/10.1016/S0016-2361(98)00048-9
  30. Zheng, Q. P., Zhang, H. M. and Zhang, D. F. (2005). A computational study of combustion in compression ignition natural gas engine with separated chamber. Fuel 84, 12-13, 1515–1523