Abstract
In this paper, an analytical model is developed to describe the dynamic characteristics of a roller bearing. In order to obtain accurate dynamic response of roller bearing, each roller is modeled as a rigid body, which has radial and axial movement and rotational constraints. Beam element between outer race segments is used to consider flexibility of outer race. Beam deflection is calculated from beam forces and used for contact between roller and outer race. The efficient contact search kinematics and algorithms in the context of the compliance contact model are implemented to detect the interactions between roller and race for the sake of speedy and robust solutions. The numerical results are validated with another analysis results which are calculated using waviness condition. Increasing rollers, dynamic responses are compared with each other. In order to confirm dynamic behavior and nonlinear characteristic of roller bearing, Poincare map is used.