DOI QR코드

DOI QR Code

Isolation and Characterization of Xylanase-producing Paenibacillus sp. HY-8 from Moechotypa diphysis

털두꺼비하늘소 (Moechotypa diphysis)로부터 Xylanase를 생산하는 Paenibacillus sp. HY-8 균주의 분리 및 특성

  • 허선연 (한국생명공학연구원 생물자원센터) ;
  • 오현우 (한국생명공학연구원 생물자원센터) ;
  • 박두상 (한국생명공학연구원 생물자원센터) ;
  • 김향미 (한국생명공학연구원 생물자원센터) ;
  • 배경숙 (한국생명공학연구원 생물자원센터) ;
  • 박호용 (한국생명공학연구원 생물자원센터)
  • Published : 2007.08.30

Abstract

From the course of screening of useful xylanase producing microorganism from a phytophagous longicorn beetle, we isolated an extra-cellular xylanase producing strain, Paenibacillus sp. HY-8 from the intestine of Moechotypa diphysis adult. On the basis of morphological, biochemical and phylogenetic studies of the new isolate was identified as a Paenibacillus species. Production of xylanase in this strain was strongly induced by adding xylan to the growth medium and repressed by glucose or xylose. The highest xylanase production was attained in the M9 media containing 1% yeast extract and 0.5% birchwood xylan when cultured at $25^{\circ}C$ for 24 hrs. HY-8 producing xylanase showed superior hydrolytic activities against various plant source feedstuff than control xylanase produced by Tricoderma sp. at pH 6.0.

Xylan이 풍부한 식물체를 먹이로 하는 하늘소의 장내에 존재하는 xylanase 생산 미생물의 탐색 과정에서 털두꺼비하늘소 (Moechotypa diphysis) 성충의 장으로부터 우수한 xylanase 생산균주 Paenibacillus sp. HY-8을 분리하였다. 생화학적, 계통학적 분석결과를 바탕으로 이 분리균은 Paenibacillus 속에 속하는 종으로 분석되었다. HY-8 균주에서 xylanase 생산은 제한배지에 xylan을 첨가함으로써 유도되는 특성을 나타내었고 1% 의 yeast extract와 0.5%의 birchwood xylan이 포함된 M9 배지에서 $25^{\circ}C$, 24시간의 배양에 의해 xylanase의 생산이 최대치에 도달하였다. HY-8 균주가 생산하는 xylanase는 pH6.0에서 여러 가지 식물성 사료의 원료에 대하여 대조구로 사용된 Tricoderma sp. 유래의 xylanase에 비해 우수한 분해능을 나타내었다.

Keywords

References

  1. Bachmann, S.L. and A.J. McCarthy. 1991. Purification and cooperative activity of enzymes constituting the xylan-degrading system of Thermomonospora fusca. Appl. Environ. Microbiol. 57: 2121-2130
  2. Beg, Q.K., B. Bhushan, M. Kapoor and G.S. Hoondal. 2000. Production and characterization of thermostable xylanase and pectinase from a Streptomyces sp. QG-11-3. J. Ind. Microbiol. Biotechnol. 24: 396-402 https://doi.org/10.1038/sj.jim.7000010
  3. Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3: 286-290 https://doi.org/10.1016/0167-7799(85)90004-6
  4. Broderick, N.A., K.F. Raffa, R.M. Goodman and J. Handelsman. 2004. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70: 293-300 https://doi.org/10.1128/AEM.70.1.293-300.2004
  5. Collins, T., C. Gerday and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases, FEMS Microbiol. Rev. 29: 3-23 https://doi.org/10.1016/j.femsre.2004.06.005
  6. Courtin, C.M., A. Roelants and J.A. Delcour. 1999. Fractionation-reconstitution experiments provide insight into the role of endoxylanases in bread-making. J. Agric. Food Chem. 47: 1870-1877 https://doi.org/10.1021/jf981178w
  7. Dillon, R.J. and V. M. Dillon. 2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49: 71-92 https://doi.org/10.1146/annurev.ento.49.061802.123416
  8. Egert, M., B. Wagner, T. Lemke, A. Brune and M. Friedrich. 2003. Microbial community structure in the midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol. 69: 6659-6668 https://doi.org/10.1128/AEM.69.11.6659-6668.2003
  9. Heo, S.Y., J. Kwak, H.W. Oh, D.S. Park, K.S. Bae, D.H. Shin, and H.Y. Park. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY -8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759
  10. Khashin, A., I. Alchnati and Y. Shoham. 1993. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59: 1725-1730
  11. Kosugi, A., K Murashima and R.H. Doi. 2001. Characterization of xylanolytic enzymes in Clostridium cellulovorans: expression of xylanase activity dependent on growth substrates. J. Bacteriol. 183: 7037-7043 https://doi.org/10.1128/JB.183.24.7037-7043.2001
  12. Kulkarni, N., A. Shendye and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456 https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
  13. La Grange, D.C., I.S. Pretorius, M. Claeyssens and W.H. Van Zyl. 2001. Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger betaxylosidase (xInD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl. Environ. Microbiol. 67: 5512-5519 https://doi.org/10.1128/AEM.67.12.5512-5519.2001
  14. Lee, G.E., C.H. Kim, H.J. Kwon, J. Kwak, D.H. Shin, D.S. Park, K.S. Bae and H.Y. Park. 2004. Biochemical characterization of an extracellular protease in Serratia proteomaculans isolated from a spider. Kor. J. Microbiol. 40: 269-274
  15. Lee, Y.E., S.E. Lowe, B. Henrissat and J.G. Zeikus. 1993. Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. J. Bacteriol. 175: 5890-5898 https://doi.org/10.1128/jb.175.18.5890-5898.1993
  16. McCracken, K.J., M.R. Bedford and R.A. Stewart. 2001. Effects of variety, the 1B/1R translocation and xylanase supplementation on nutritive value of wheat for broilers. Br. Poult. Sci. 42: 638-642 https://doi.org/10.1080/00071660120088452
  17. Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  18. Park, D.S., R. W. Oh, K.S. Bae, H.M. Kim, S.Y. Heo, N.J. Kim, K.Y. Seol and H.Y. Park. 2007. Screening of bacteria producing lipase from insect gut: Isolation and characterization of a strain, Burkhoderia sp. HY-I0 producing lipase. Korean J. Appl. Entomol. 46: 1-9 https://doi.org/10.5656/KSAE.2007.46.1.131
  19. Saito, N. and M. Nei. 1987. A neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  20. Shida, O., H. Takagi, K. Kadowaki, L.K. Nakamura and K. Komagata. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibaci/lus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 47: 289-298 https://doi.org/10.1099/00207713-47-2-289
  21. Siedenberg, D., S.R. Gerlach, K. Schugerl, M.L.F. Giuseppin and J. Hunik. 1998. Production of xylanase by Aspergillus awamori on synthetic medium in shake flask cultures. Process Biochem. 33: 429-433 https://doi.org/10.1016/S0032-9592(97)00090-3
  22. Skiper, N., M. Sutherland, R.W. Davies, D. Kilburn, R.C. Miller and R. Wong. 1985. Secretion of a bacterial cellulase by yeast. Science. 230: 958-960 https://doi.org/10.1126/science.230.4728.958
  23. Smibert, R.M. and N.R. Krieg. 1994. Phenotypic characterization. pp 607-654 in Methods for general and molecular bacteriology. Washington, D.C. American Society for Microbiology
  24. Tenkanen, M., J. Puls and K. Poutanen. 1992. Two major xylanases of Trichoderma reesei. Enzyme. Microb. Technol. 14: 566-574 https://doi.org/10.1016/0141-0229(92)90128-B
  25. Teunissen, M.J., A.A. Smits, H.J. M. Op den Camp and G.D. Vogels. 1991. Fermentation of cellulose and production of cellulolytic and xylanolytic enzymes by anaerobic fungi from ruminant and non-ruminant herbivores. Arch. Microbiol. 156: 290-296 https://doi.org/10.1007/BF00263000
  26. Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  27. Varma, A., B.K. Kolli, J. Paul, S. Saxena and H. Konig. 1994. Lignocellulose degradation by microorganisms from termite hills and termite gut: a survey on the present state of art. FEMS Microb. Rev. 15: 9-28 https://doi.org/10.1111/j.1574-6976.1994.tb00120.x
  28. Watanabe, H., H. Noda, G. Tokuda and N. Lo. 1998. A cellulase gene of termite origin. Nature. 394: 330-331 https://doi.org/10.1038/28527