DOI QR코드

DOI QR Code

DNA Markers Applicable for Identification of Two Internal Apple Feeders, Grapholita molesta and Carposina sasakii

두 종의 사과 심식나방류 [복숭아순나방 (Grapholita molesta), 복숭아심식나방 (Carposina sasakii)] 동정용 DNA 분자지표

  • Song, Seung-Baeck (Department of Bioresource Sciences, Andong National University) ;
  • Choi, Kyeung-Hee (Apple Experiment Station, National Horticultural Research Institute) ;
  • Lee, Soon-Won (Apple Experiment Station, National Horticultural Research Institute) ;
  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
  • 송승백 (안동대학교 생명자원과학과) ;
  • 최경희 (농촌진흥청 원예연구소 사과시험장) ;
  • 이순원 (농촌진흥청 원예연구소 사과시험장) ;
  • 김용균 (안동대학교 생명자원과학과)
  • Published : 2007.08.30

Abstract

Two fruit moths of the oriental fruit moth, Grapholita molesta (Busck), and the peach fruit moth, Carposina sasakii (Matsumura), infest apples in Korea by internally feeding behavior. C. sasakii is a quarantine insect pest from some other countries importing Korean apples. G. molesta is not a quarantine insect pest, but can be incorrectly identified as C. sasakii especially when it is found inside apple fruits at its larval stages because it is not easy to identify the two species by morphological characters alone. This incomplete identification results in massive economical loss by fruits needlessly destroyed or turned away at border inspection stations of the importing nations. This difficulty can be overcome by molecular DNA markers. Several polymorphic regions of mitochondrial DNA of both species were sequenced and used for developing specific striction sites and polymerase chain reaction (PCR) primers. Based on these sequences, three diagnostic PCR-restriction fragment length polymorphism (RFLP) sites were detected and validated for their practical uses. Also, species-specific PCR primers were devised to develop diagnostic PCR method for identifying the internal feeders.

국내 서식하는 복숭아순나방 (Grapholita molesta (Busck))과 복숭아심식나방 (Carposina sasakii (Matsumura))의 유충은 사과 과실내부를 섭식하여 피해를 주는 해충이다. 사과를 수출할 때 복숭아심식나방은 수출대상국들로부터 검역 대상해충이다. 반면에 복숭아순나방은 광범위한 분포로 비교적 수입국으로부터 검역 대상 해충은 아니지만, 사과 과실 내부에서 발견되는 경우 복숭아심식나방으로 오인될 수 있다. 이는 발견되는 유충을 가지고 형태적으로 두 종을 구분하기 어렵기 때문이다. 특별히 수입국 검역단계에서 이러한 불완전한 동정 실태는 수출 사과의 폐기 또는 반송과 수출중단 등과 같은 막대한 경제적 손실을 초래하게 된다. 이에 이들을 구분할 수 있는 분자지표 개발이 요구되었다. 두 종의 미토콘드리아 DNA를 대상으로 다형을 보이는 여러 영역의 염기서열을 분석하였다. 이 서열을 바탕으로 진단용 제한위치가 결정되고 종 특이적 프라이머가 제작되었다. 본 연구는 세 부위의 종 특이적 제한효소 위치에 따라 PCR-RFLP 기술과 종 특이적 프라이머를 이용하여 진단용 PCR 기술을 개발하였다.

Keywords

References

  1. Ahn, S.B., H.W. Koh and Y.I. Lee. 1985. Study on apple pests and natural enemy. pp. 417-428. In Research report of RDA: crop protection. RDA, Suwon, Korea
  2. Avise, J.C., J. Arnold, R.M. Ball, E. Bermingham, T. Lamb, J.E. Neigel, C.A. Reeb and N.C. Saunders. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18: 489-522 https://doi.org/10.1146/annurev.es.18.110187.002421
  3. Bae, J.S., I. Kim, H.D. Sohn and B.R. Jin. 2004. The mitochondrial genome of the firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Mol. Phylogenet. Evol. 32: 978-985 https://doi.org/10.1016/j.ympev.2004.03.009
  4. Barcenas, N.M., T.R. Unruh and L.G. Neven. 2005. DNA diagnostics to identify internal feeders (Lepidoptera: Tortricidae) of pome fruits of quarantine importance. J. Econ. Entomol. 98: 299-306 https://doi.org/10.1093/jee/98.2.299
  5. Boo, K.S. 1998. Variation in sex pheromone composition of a few selected lepidopteran species. J. Asia-Pacific Entomol. 1: 17-23 https://doi.org/10.1016/S1226-8615(08)60003-5
  6. Borchert, D.M., R.E. Stinner, J.F. Walgenbach and G.G. Kennedy. 2004. Oriental fruit moth (Lepidoptera: Tortricidae) phenology and management with mothoxyfenozide in North Carolina apples. J. Econ. Entomol. 97: 1353-1364 https://doi.org/10.1093/jee/97.4.1353
  7. Clary, D.O. and D.R. Wolstenholme. 1985. The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J. Mol. Evol. 22: 252-271 https://doi.org/10.1007/BF02099755
  8. Clary, D.O. and D.R. Wolstenholme. 1987. Drosophila mitochondrial DNA: conserved sequence in the A+T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. J. Mol. Evol. 25: 116-125 https://doi.org/10.1007/BF02101753
  9. de Bruijn, M.H.L. 1983. Drosophila melanogaster mitochondrial DNA: a novel organization and genetic code. Nature 304: 234-241 https://doi.org/10.1038/304234a0
  10. Fettens, M. and E.A. Temu. 2003. Species-specific primer for identification of Anopheles quadriannulatus sp. B. (Diptera: Culicidae) from Ethiopia using a multiplex polymerase chain reaction assay. J. Med. Entomol. 40: 112-115 https://doi.org/10.1603/0022-2585-40.1.112
  11. Garesse, R. 1988. Drosophila melanogaster mitochondrial DNA: gene organization and evolutionary considerations. Genetics 118: 649-663
  12. Harrison, R.G. 1989. Animal mtDNA as a genetic marker in population and evolutionary biology. Trends Ecol. Evol. 4: 6-11 https://doi.org/10.1016/0169-5347(89)90006-2
  13. Haymer, D.S. 1994. Random amplified polymorphic DNAs and microsatellites: what are they, and can they tell us anything we don't already know? Ann. Entomol. Soc. Am. 87: 717-722 https://doi.org/10.1093/aesa/87.6.717
  14. HsuChen, C.-C. and D.T. Dubin. 1984. A cluster of four transfer RNA genes in mosquito mitochondrial DNA. Biochem. Int. 8: 385-391
  15. HsuChen, C.-C., R.M. Kotin and D.T. Dubin. 1984. Sequences of the coding and flanking regions of the large ribosomal subunit RNA gene of mosquito mitochondria. Nucleic Acids Res. 12: 7771-7785 https://doi.org/10.1093/nar/12.20.7771
  16. Kampen, H., A. Sternberg, J. Proft, S. Bastin, F. Schaffner, W.A. Maier and H.M. Seitz. 2003. Polymerase chain reaction-based differentiation of the mosquito sibling species Anopheles claviger S.S. and Anopheles petragnani (Diptera: Culicidae). Am. J. Trop. Med. Hyg. 69: 195-199
  17. Kim, Y., M.L. Lee and C. Chung. 1998. Study on the genetic variation of the mitochondrial DNA in the beet armyworm, Spodoptera exigua (Hubner), using PCR-RFLP. Kor. J. Appl. Entomol. 37: 23-30
  18. Lee, M.L. and M.H. Lee. 1997. Amplification mitochondrial DNA identify four species of Tetranychus mites (Acarina: Tetranychidae) in Korea. Kor. J. Appl. Entomol. 36: 30-36
  19. McCracken, A., I. Uhlenbusch and G. Gellissen. 1987. Structure of the cloned Locusta migratoria mitochondrial genome: restriction mapping and sequence of its ND-1 (URF-1) gene. Curr. Genet. 11: 625-630 https://doi.org/10.1007/BF00393926
  20. Moritz, C., T.E. Dowling and W.M. Brown. 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Ann. Rev. Ecol. Syst. 18: 269-292 https://doi.org/10.1146/annurev.es.18.110187.001413
  21. Mun, J.H., J.S. Kim, Y.H. Song, T.H. Kim and G.K. Roderick. 2000. Molecular genetics diagnosis of four fruit fly species (Tephritidae). J. Asia-Pacific Entomol. 3: 89-94 https://doi.org/10.1016/S1226-8615(08)60061-8
  22. Neale, D.B. and C.G. Williams. 1991. Restriction fragment length polymorphism mapping in conifers and applications to forest genetics and tree improvement. Can. J. For. Res. 21: 545-554 https://doi.org/10.1139/x91-076
  23. Park, K.T., K.Y. Choe, J.C. Paik and S.C. Han. 1977. Lepidopterous insect pest on apple tree. Kor. J. Plant Prot. 16: 33-39
  24. Pree, D.J., K.J. Whitty, L. van Driel, G.M. Walker and L. Van Driel. 1998. Resistance to insecticides in oriental fruit moth populations (Grapholita molesta) from the Niagara Peninsula of Ontario. Can. Entomol. 130: 245-256 https://doi.org/10.4039/Ent130245-3
  25. Roehrich, R. 1961. Contribution a l'etude ecologique des populations de la tordeuse de pecher (Grapholita molesta Busk) dans la region Aquitaine. Annales des Epiphyties. pp. 114
  26. Rothschild, G.H.L. and R.A. Vickers. 1991. Biology, ecology and control of the oriental fruit moth. pp. 389-314, In World crop pest. Vol. 5. Tortricid pests: their biology, natural enemies and control, eds. by L.P.S. van der Geest and H.H. Evehnius). Elsevier, Amsterdam
  27. Salazar, M., C. Theoduloz, A. Vega, F. Poblete, E. Gonzalez, R. Badilla and L. Meza-Basso. 2002. PCR-RFLP identification of endemic Chilean species of Rhagoletis (Diptera: Tephritidae) attacking Solanaceae. Bull. Entomol. Res. 92: 337-341
  28. Satta, Y., H. Ishiwa and S.I. Chigusa. 1987. Analysis of nucleotide substitutions of mitochondrial DNAs in Drosophila melanogaster and its sibling species. Mol. Biol. Evol. 4: 638-650
  29. Scheffer, S.J., A. Wijesekara, D. Visser and R.H. Lallet. 2001. Polymerase chain reaction-restriction fragment length polymorphism method to distinguish Liryomyza huidobrensis from J. langei (Diptera: Agromyzidae) applied to three recent leaf miner invasions. J. Econ. Entomol. 94: 1177-1182 https://doi.org/10.1603/0022-0493-94.5.1177
  30. Simon, C. 1991. Molecular systematics at the species boundary: exploiting conserved and variable regions of the mitochondrial genome of animal via direct sequencing from amplified DNA. pp. 33-71. In Molecular techniques in taxonomy, eds. by G.M. Hewitt, A.W.B. Johnston and J.P.W. Young. Springer, Berlin
  31. Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu and P. Flook. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers. Ann. Entomol. Soc. Am. 87: 651-701 https://doi.org/10.1093/aesa/87.6.651
  32. Sperling, F.A.H. and D.A Hickey. 1995. Amplified mitochondrial DNA as diagnostic marker for species of conifer-feeding Choristoneura (Lepidoptera: Tortricidae). Can. Entomol. 127: 277-288 https://doi.org/10.4039/Ent127277-3
  33. Uhlenbusch, I., A. McCracken and G. Gellissen, 1987. The gene for the large (16S) ribosomal RNA from the Locusta migratoria mitochondrial genome. Curr, Genet. 11: 631-638 https://doi.org/10.1007/BF00393927
  34. Vlasak, I., S. Burgschwaiger and G. Kreil. 1987. Nucleotide sequence of the large ribosomal RNA of honeybee mitochondria. Nucleic Acids Res. 15: 2388 https://doi.org/10.1093/nar/15.5.2388
  35. Wolstenholme, D.R. 1992. Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141: 173-216 https://doi.org/10.1016/S0074-7696(08)62066-5

Cited by

  1. Simultaneous identification ofGrapholita molestaBusck andGrapholita dimorphaKomai by PCR-RFLP vol.46, pp.3, 2016, https://doi.org/10.1111/1748-5967.12166
  2. Morphological Differences between Larvae of the Oriental Fruit Moth (Grapholita molesta Busck) and the Peach Fruit Moth (Carposina sasakii Matsumura) in Korea vol.43, pp.1, 2013, https://doi.org/10.9729/AM.2013.43.1.21
  3. Genetic diversity and structure in apple-infesting pests of Carposina sasakii, Grapholita dimorpha and Grapholita molesta in Korea vol.20, pp.1, 2017, https://doi.org/10.1016/j.aspen.2016.11.002
  4. Effects of different sex pheromone compositions and host plants on the mating behavior of two Grapholita species vol.16, pp.4, 2013, https://doi.org/10.1016/j.aspen.2013.08.004
  5. Larval species composition and genetic structures of Carposina sasakii, Grapholita dimorpha, and Grapholita molesta from Korea 2017, https://doi.org/10.1017/S0007485317000694
  6. The Complete Mitochondrial Genome of Grapholita molesta (Lepidoptera: Tortricidae) vol.104, pp.4, 2011, https://doi.org/10.1603/AN10167
  7. A Postharvest Control Technique of the Oriental Fruit Moth, Grapholita molesta, Infesting Apples Using CATTS vol.53, pp.1, 2014, https://doi.org/10.5656/KSAE.2014.01.1.069
  8. Diagnostic molecular markers of six lepidopteran insect pests infesting apples in Korea vol.12, pp.2, 2009, https://doi.org/10.1016/j.aspen.2009.01.002
  9. Different types of fruit damages of three internal apple feeders diagnosed with mitochondrial molecular markers vol.16, pp.2, 2013, https://doi.org/10.1016/j.aspen.2013.01.008
  10. Comparative transcriptome analysis of sex pheromone glands of two sympatric lepidopteran congener species vol.103, pp.4, 2014, https://doi.org/10.1016/j.ygeno.2014.02.009