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Optimal Wiener-Hopf Decoupling Controller Formula
for State-space Algorithms

Kiheon Park and Jin-Geol Kim

Abstract: In this paper, an optimal Wiener-Hopf decoupling controller formula is obtained which
is expressed in terms of rational matrices, thereby readily allowing the use of state-space
algorithms. To this end, the characterization formula for the class of all realizable decoupling
controller is formulated in terms of rational functions. The class of all stabilizing and decoupling
controllers is parametrized via the free diagonal matrices and the optimal decoupling controller is

determined from these free matrices.

Keywords: One-degree-of-freedom controller, optimal decoupling control, state-space formulas,

Wiener-Hopf design.

1. INTRODUCTION

The design of decoupling control systems that
eliminate the interactions between the various
reference and manipulated signals has attracted the
interest of many researchers. Desoer and Giindes [1]
and Lee and Bongiorno [2] solved the two-degree-of-
freedom decoupling problems. The decoupling
problem for a one-degree-of-freedom control system
was treated by Gomez and Goodwin [3], Youla and
Bongiorno [4] and Bongiorno and Youla [5]. A
notable feature of the work by Youla and Bongiorno
[4] is that the solvability condition and the
characterization of all decoupling controllers are
explicitly expressed in a very convenient form to
develop optimal controller formulas. The formula of
Youla and Bongiorno [4] is derived in the frequency
domain which requires the use of spectral factori-
zation and partial fractions. The purpose of this paper
is to develop state-space numerical algorithms for this
formula as an alternative to the already available
frequency domain numerical algorithms used for
spectral factorization and partial fraction expansion. It
has been shown that the Wiener-Hopf controllers
described in terms of polynomial matrices can be
successfully converted into the equivalent ones
described in terms of rational matrices which allow
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the development of state-space parameter solutions
[6,7]. In this paper, the optimal controller formula of
Youla and Bongiorno [4] is reformulated in terms of
rational matrices, thereby enabling the use of state-
space algorithms. To this end, the characterization
formula for the class of all realizable decoupling
controllers is reformulated in terms of rational
functions instead of polynomials. Youla and
Bongiorno [4] used the Schur product to transform the
constrained decoupling optimization problem into a
solvable Wiener-Hopf problem. For the same purpose,
we use the Khatri-Rao product and it turns out that
this product enables us to develop the state-space
computational ~ formulas  successfully.  Another
important contribution of this paper is to loosen the
assumptions made in [4], which are needed to
guarantee the existence of the optimal decoupling
controller. Specifically, the assumption of the non-
singularity of A, P in Re s =0 (Assumption 6) is

removed in this paper. All of the results in this paper
were developed by working exclusively in the
complex s-plane and all matrix functions of
s=0 + jo are assumed to be real and rational . For
any rational matrix G(s), the notations G (s),
detG, and

determinant and trace of G(s), respectively. The

TrG are used for the transpose,

matrix Gi(s) stands for G'(—s). A diagonal matrix
Gwith g; in the i™row, i"-column, i=1—n, is
denoted by diag{g;}. The nxn identity matrix is
denoted by [ When the

e
understandable from the context, the subscript will be
omitted. The Schur product of two matrices is denoted
as GoR and is the matrix whose i"-row, j™-column

dimension is

is given by g;#;. The Kronecker product of two
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matrices is denoted as G® R. The vector vecG =
[gi g'2 g;,] is formed by stacking all the columns of

the matrix G. The Khatri-Rao product of two matrices

is denoted as G ® R and is the matrix whose i"-
column is given by g, ®# where g, and r are
the i"™column of G and i"-column of R,

respectively. For a diagonal matrix G =diag{g,;,

229, ", &> the vector vechz{g” g gnn}
is formed by stacking all the diagonal elements of the
matrix G. When V is a diagonal matrix, vec(AVD)

=(D'® AyvecV =(D' ® A)vecdV [8]. Some useful
formulas used in this paper are (A®B)F ®
G)=AF ® BG, I, ® [q ay - a,]=diag{a,a,,
~a,t and (F(s) @ G(s)«(L(s) ® M(s)) = (Fx(s)
L(s))o (G«(s)M(s)). When D; is diagonal, DD,
(M oN)DyDy =(DiMD,)o(D;ND)  and  vecd(D,
DyD3)=DD;  vecdD,. In the partial fraction
expansion of G(s), the contribution made by all its
finite poles in Re s<0 and Res>0, and at s=o
are denoted by {G},,{G}_ and {G},, respectively.
A positive definite matrix @ is denoted by Q>0
and 0" denotes a positive definite matrix satisfying
Ql/ 2 ‘Q” 2 =(. A rational matrix G(s) is said to
be stable if it is analytic in Re s>0. A constant

matrix F is sad to be stable if its eigenvalues are all in
Re s <0. A rational function a(s) is said to be

biproper if both a(s) and 1/a(s) are proper.

2. THE DECOUPLING PROBLEM AND ITS
SOULUTION IN THE FREQUENCY DOMAIN

In this section the Wiener-Hopf decoupling problem
for the one-degree-of freedom controller configuration
shown in Fig. 1 is proposed along with its solution. In
the Fig. 1 the dimension of the variables uy, u, r, d, y,
and m is gx1 and that of the variable d is

px1. As is evident from this set-up, we treat the

d,

|

Pd(s)
a{ P,(s) C(s) Fl P(s) y

Fig. 1. A control system with a one-degree-of-freedom
controller.

square plant case and we make the following
assumption.
Assumption 1: det P(s) #0.

The disturbance d; and the noises » and m are
white and process power spectral densities of
®,, P, and P,, respectively. These matrices are
positive definite and ®, is taken to be the identity
without loss of generality. The reference signal u(s) is
the output of the block P,(s) driven by uy(¢)=
co(t) where J(¢) is the unit impulse and ¢ is a

column vector of random variable with zero means.
Without loss of generality, the covariance matrix

<cc” > is taken as the identity matrix. The block
P,(s) is not a physical one, but one of the design
parameters which determines the shape-deterministic
part of the reference input u(r) [7]. In this paper
P,(s) is assumed to have poles in Re s <0, which
allows jw -axis poles to accommodate the tracking
problems for step or ramp inputs. When the block
P;(s) describes a real physical block, it should be a

stable one. When it represents a mere paper model,
however, this stability constraint can be relaxed. It is

assumed that n, m, dy and u(s) are statistically
independent. In Fig. 1, the variables are related by

y($)=T(s)Bug+n—m)+(I -T(s))P;d,, )
r(s) = P ()T (s)(Pug +n—m— Pydy), 2)

where T(s)=PC( +PC)“1. A rational matrix 7(s)
is said to be realizable for the plant P(s) if the

corresponding controller C(s) stabilizes the feedback
system in Fig. 1. By definition, a controller C(s) is

said to be decoupling for the plant P(s) if it

stabilizes the loop and produces a diagonal 7(s) with
detT(s)#0. Lemma 2 describes the existence

condition of a decoupling controller. Let us first
define two polynomials to describe the decoupling

condition. Let the i-th column of P~! and i-th row of
P(s) be denoted by P,;(s) and P,(s), respectively.
Let 6,(s) and w;(s) denote the unique monic
polynomials of the minimal degrees such that
P,;(5)6;(s) and w;(s)P,(s) are stable, respectively.
The proof of the following lemma can be seen in [4].
Lemma 1: A decoupling controller for the plant

P(s) exists if and only if 1) the polynomials &, and
w; are coprime, i=1—g¢ and 2) the unique data
construct Z(s) = P_lAgAaP is stable where Ay =
diag{6;}, A, =diag{a;} and the polynomial a;(s)
is such that
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6+ fy; =1,i=1—>q. (3)

The existence of such «a; and p;

guaranteed if 6, and y; are coprime. When a

is always

decoupling controller exists, any realizable diagonal
transfer matrix 7'(s) is characterized by

T(s)=Ap(A, +AA,), G

where A, =diag{y;} and A(s) is an arbitrary st-
able diagonal matrix chosen so that det(/ —T(s)) £ 0.
The characterization of all realizable transfer matrices
in (4) is the key formula to derive the H, optimal
controller. This formula is, however, described in
terms of polynomial matrices and this causes a
difficulty in developing numerical algorithms using
state-space parameters. Next, we develop a rational
matrix version of the formula in (4). Let A (s)
denote the Wiener-Hopf spectral factor of the equation
0,0« + s = 4. We define the following four
rational functions:

G =il A G = ahi + A7V Ay (5)
0,=6,1 2, By = Py ~ A 1136 1 A, (6)
where
':{ﬂi/gi’ if 6(6,)=6(y;) 7
eyt if 56) <5w)).

Park et al. [9] showed that ;,,, &, and f, are

stable proper rational functions when &; and y; are

i

coprime and they satisfy the equality
G0, + B, =1,i=1-q. )
Let A, =diagif). A, =diag{y;}. A, =diag{d;},
and Ay =diag{f;}. Then it follows from (5)~(7)
that
Ag=8gA7', A, = A A, A, =diag{h},  (9)
Ay =Agh, +{AZA, }oA, A7 A, =diag{y;}, (10)
Ap=ApA; —A7'AG{AZA ),

S (1n

Note that ﬁg,ﬁw,ﬁa, and Aﬂ are stable proper

rational matrices and their state-space parameters are
easily computed by using the algorithms in [9]. Now,
we have the following Lemma which can be proved
from (4) by using the relations (9) ~ (11).

Lemma 2: The class of all realizable T'(s) in (4)
is also characterized by the formula

T(s)=Ap(A, +AA), (12)

where A(s) is an arbitrary diagonal stable rational
matrix chosen so that det(/ —T(s))# 0. Though the
formula in (12) is a stable rational matrix version of
the one in (4), we still need to modify it to develop
numerical algorithms using state-space parameters.
Let a;(s) and b;(s) be arbitrary monic strict-
Hurwitz polynomials such that 6,/4; and /b,
are biproper. Let us define A, =diag{a;} and
Ay =diagi{b;}. Then, the realizable T(s) in (12)
can be modified as

T(s)=AgA, +AyAA,,, (13)
f2a g 174

where Ag = AQA;I and AV, = Al_lAl/, are biproper

and A:= ALA A&A 214\, 1s an arbitrary stable diagonal
matrix. The modified formula in (13) will be used to
find the optimal H, solution. Next, we present the H,
optimal decoupling control problem. A meaningful
cost function is given by

2 (14)

E =|0.e(s)[; +£2 [0, (s)r(s)
where

e(s) = u(s) - y(s)

(15)
= -TYPuy—P,dy)—T(n—-m).

The optimal realizable decoupling 7'(s) is the one

that minimizes the cost function E. The optimal
problem is solvable under the following assumptions.
Assumption 2: The constant weighting matrix Q,

is nonsingular. The stable weighting matrix Q,(s) is
chosen so that IQQ, (s)P_l(s) is proper (such a
choice is always possible).

Assumption 3: Consider the fraction P(s):A‘1
(s)B(s) where (4,B)is a left coprime poly-nomial
matrix pair. The matrices A(s)F,(s) and A(s)P;(s)

are stable.
Let us define

[ o

M, =| . and M,=[P,Q,Q, P, (16
1 [erP‘l} 2 =] ], (16)

where Q, =CI)}1/2 and Q,, = d)l,f. Let Res=0
denote the finite part of the purely imaginary s= jo
axis.

Assumption 4: The matrix Gy = Agp«MpxM Ay is
nonsingular in Re s=0.

Assumption 5: The matrix G, = A, M, M5:A « is
4 w2 Ry
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nonsingular in Re s =0.
Assumption 6: The matrices F,(s) and F,(s)

are strictly proper.
For later use, we define Q(s) as the Wiener-Hopf

spectral factor of the equation
A eBge(My © M) (M © M))AgA,,

=G, 0 Gy =0 (17)

and define U, M,, and M, as

U=(M;® MDA, A,Q7", (18)
MO:Mp_MIAQAaMz’
QF 0 0 QP (19)
M, = )
P 0 00 O

As the consequences of Assumptions 3 ~ 5, we have
the following lemma whisch is useful to prove
Theorem 1.

Lemma 3: 1) AP Z&u,Pd, and AWMZ are

whu

stable. 2) If the plant P(s) admits a decoupling
controller, then P_]AQAaPu and P_IAHAan are
stable. 3) Q is stable. 4) Q7! is stable and hence
U isinner. 5) M, is stable. 6) O s proper.

3 . < % -1 . < -1

Proof: 1) Since AWP—AWA B is stable, A, A

is stable and, therefore, AWA_IAPu, AWAflAPd and,
hence, AWMz are stable. 2) P_IAQAaP'—'P_lAQ
A P+P A AAZA,} W AG'A, P is stable  since
P_lAgAaP is stable by Lemma 1.
P_IAQAQA_I is stable so that P_lﬁgﬁaA_lAPu
and P_IAHZSQA_lAPd are stable. 3) Since M,;Ay

Hence,

and AWMZ are stable, Gg and GW are analytic in
Re s =0 and hence € is stable. 4) By Assumptions
4 and 5, GW oég is nonsingular in Re s=0 and

hence Q7! is analytic in Re s=0 and is stable.

That U is inner is obvious from (17). 5) Using the
equality in (11), we obtain

My =M, - MAA M,

_ QeA,HA(//Pu _QeAHAan
_IGQrP_IAHAaBt _kAQrP_IAGAaQn
~Q,ApA,Q,, 0,A A, Py

k0, PR ALQ, kO.P'R,A P, |

This matrix is stable according to 1) and 2). 6) Since

Q(s) is proper and Q(w) is invertible, Q1 s

proper. In fact, éw and ée are proper so that
G’W oég =0, and hence Q(s), are proper. Also,
Q4 (0)Q(c0) = éw ()0 ée () is positive definite since
G;/, () and Gy(w) are positive definite [10]. O

Next, substituting (1) and (2) into (14) and (15), we

2
have E = NM » —MTM, “2 Invoking the realizable
diagonal transfer matrix formula for 7'(s) in (13),
A oan 2

we obtain F =”M0 _MlAHAAl//M2||2' Since the
vectorization does not affect the H, norm, E =

[vecM, ~(My® M, )vecd(AHAAV, )llz =|vecM, - (M,

N o2 o2 .
© M)AgA,, vech“2 = HvecMO —UQvecdA > which

is the standard form of the H, problem form. Our

H, problem is to find the free stable parameter A
that minimizes E. The procedure used to obtain the

optimal A, and hence the optimal T, is straight-
forward [6] and hence only its solution formula is
presented here.

Theorem 1: Let the plant P(s) admit a decou-
pling controller (Lemma 1). Under Assumptions 2~6,

the optimal decoupling problem is solvable and the
optimal closed transfer matrix is obtained as

vecdT,, (s)= A, AgQ 7 ({B}, +{c}), (20)
where

b=UsvecMp, (21)

c=QAs'RgA A e, e, =11 1]. (22)

The optimal closed transfer matrix T, (s) is strictly

proper.

The solution formulas obtained in this section are
based on frequency domain algorithms such as
spectral factorizations and partial fractions. It is
desirable to develop state-space numerical algorithms
as alternatives to the frequency domain numerical
algorithms. We seek to develop state-space domain
formula in the next section.

3. NUMERICAL COMPUTATION IN THE
STATE-SPACE DOMAIN

In this section, the state—space representations of
the formulas in Section 2 are sought to facilitate their
computation. The notation M= ARE(F,R,Q) implies
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that M is the so-called stabilizing solution of the
algebraic Riccati equation F'M + MF — MRM +Q
=0. That is, M is a solution to the ARE and
F —RM s stable. This solution exists and is unique
provided that (F,R) is stabilizing and the associated

Hamiltonian matrix has no je - axis eigenvalues [11].

To simplify notation, the convention H (sl —F )_IG

F|G R
+J = ZA; or H(sI-F) G+J=[F,G,H,J]

will be used. When PFB(s)=[F,,G;,H;,J;], i=12,
we define prod(£(s),
parameters of the product P(s)P(s). Thatis,

P (s)) as the state-space

K GH,| GJ,;
prod(Pl,Pz)z 0 F2 G2
Hy JH, | Iy |

(23)

and this computation can be easily programmed as a
MATLAB function. The operation prod(P,, prod
(P, B))is conveniently written as prod(P,5,B).
In this section, numerical algorithms are developed to
find the state-space parameters of the realizable T'(s)

in (13) and the optimal solution vecd T, Topt (s) in (20).

Our main concern is to compute vecd T,,,,(s) and it

is assumed that the simple quantities such as
{P;},,{Py}_,0; and y; are calculated by hand. We
assume that the plant P(s) and the disturbance transfer
matrix P,;(s) are characterized by the structure,

x(1) = Fx(t)+ Gr(t)+ G;dy(t), y(t) = Hx(t)+Jr(¢). Then
it follows that P(s)=[F,G,H,J] and F,(s)=[F,
G,;,H,0]. Let the state-space parameters of P, (s)
be [F,,G,,H,,0]. As explained in Section 2, F, is
assumed to have its eigenvalues in Re s <0. Also,
let {Fy($)}; =[Fus>GayrHgys0] and  {Fy(s)j_ =
(Fy-» Gy Ha-,0].

Next, the state-space parameters of 59, lw, Aa
and A p are found. Using the formulas of Park et al.

[9], we obtain the state-space parameters of ¢&;, 5,-,5,-

and ; as follows:

1) When 6(6,)=6(y;), find a minimal realization
of w;(s)/6,(s) as [F;,Gy,Hy,J4] Then,

| FaKeally | Gu ~Koada Koa

{_‘; / } - oK ‘ o o
G 1/2 1/2 1/2
Gmdl H, di Gmdz J, di Gmdl

Fo | Gu Gy
= Hy | S i s (24)

Hyi | Jou I

where
Ouai =1+ I 4> i =1 +J i > 25
{Kldi = 0y (JyiH g + GiMy) 26)
Kogi = (Gl + MogiH )G
Myg; = ARE(F; — G303 T juH i, @7
G4z Gps H Gt L)
Moy = ARE(Fy; = G4 5 GrogiH ) 28)
H Gt G0 Gy

2) When 6(6;)<d(y;), let a minimal realization of

6,(s)/w;(s) be [Fy,Gy,Hy,0]. Then

i a Fu—KyaH | Gy Koy
|i ,l., ~l:|= Kldi ‘ ] 0

-6, v; ~H, 0
(29)
Fai I Gbi Gai
= Hy | Y D )
-Hy| I —Joi

where Ky = GoyMygi» Kogi = MygiH gis My =ARE
(Fui» GGy HyH i), and - M, 5, = ARE(Fg;, Hy,
H i, GyiG)-

3) When 6 =y, =1, we set &; =0, ﬁi =1, 671 =1,
and ; =1. Hence,

(30)

Now, it follows that

Ap =[Fp,Gp,Hp,Jgl.A, =[Fy,G, —Hyg,J, ], (31)
Ay =[Fg.GyrH o)A g =[Fy, Gy, H o g1, (32)
where
Fy = diag{F;},Gg = diag{Gy;},Hg = diag{H,;},
Jg = diag{Jy;},G,, = diag{G,;},J,, =diag{-Jy;},
H, =diag{Hy;},J, = diag{J);}, and
J g = diag{J1y;} .
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Next, we find the state-space parameters of Q(s)
and U(s). Let a minimal realization of Q, (s)P_l(s)
be found as QrP_1 =[£,,G,,H,,J,]. 1t is easy to

obtain the state-space parameter of M;(s) and M,(s) as

and
(33)
0 0 0
0 0 G,

H|0 Q, Q, 0

Next, we define [F,G;,H,,J;]:= prod(M;,A,) and
[£5,Gy,Hy, Jy ] = prod(AW,Mz). Let the state-space
parameters of Ae(s) and Aw(s) be found as Ag(s)
=[£y.Gp,Hp,I] and A, (s)=[F,.G,,H,,I]. We
define [F,G,,H,,J;1:= prod(M,,A,) and [F,,G,,
ﬁz,jz] = prod(AW,Mz ). In the computation " of
M,Ag and AWMZ, M]AH and AWMZ it is important to
perform a minimal realization operation [12] for the
state-space parameters to force the matrices £, 5, F,

and F, to be stable. The minimal realization

algorithms in actual use are not perfectly accurate.
This does not, however, cause a significant problem as
long as the resulting ' matrices remain stable.

Next, using the state-space formula for the Khatri-
Rao product [6,Lemma 6], we obtain

E®I J,oH | H ® J,
M)A, OMA,;=| 0 IQF | I ®G

Geor J,ef| J,e J

_| 5 ’G3
_.LB 7T (34)

The introduction of the Khatri-Rao product brings
inflates of the size of the state-space parameters, but
they have many zero terms, so that the minimal
realization operation works fairly well. Since

Q.Q = (M3A;, © MiAy)(MA, © MA,), we obt-
ain the following results from Lemma 7 of [6];
Q(s)=[/.G3,H ,,J,], (35)
where
H, =Ry (JiH; + GiM3) G6)
J,=R? Ry =J4J;3,

M; = ARE(F; - GyR; '\ J3Hs, a7
Gy Ry "G, H(I - J3R3 ' J5)Hy),

and

F3 - GsK; | GyR;"? {F4 | Gy
U = = 38
(S) {Hs -J3K3 | SRV | [ Ha| o

with K3 =J,'H,,. It follows from (35) that Q'(s)
=[F4,G4,—K3,J;1}. The next step is to calculate
{b}, and {c}_. Since b= UsvecM ,, = Us(veciM , },
+vec{M ,} ), {b}, ={Usvec{M ,},}, and the state-

space parameters of Ux,{M,}, and vec{M ply are

given by
Us(s) =[~Fi,~H}, G}, J4]s (39)
F, 0 G, 00 O
0 F 0 0 0 Gy
{Mp }+ = i -
QeHu QeHd+ 0 0 0 0
0 o | o oo o GO
H, 0

and  vec{M,}, =[ I ®F,,vecG,,I®H,,0]. The
computation of {b}, ={Usvec{M ,},}. can be done

by adopting the partial fraction technique of [6] and
the result is

(b}, =[]®Fp,vepo,Jf;(I®Hp)+Gf1M4,O]

(41)
=:[Fb,Gb,Hb,0],

where M, is the unique solution of the equation
FyMy+ My(I®F,)=-H,(I®H,). Next, notice
that {c}_ ={QA;'AgA, A} e, and QAZ'A A, is
stable. Let us define[Fs, G5, Hs,J5]=: prod(Q,A;l,
AH’A(Z) where A51=[ﬁ9_égﬁg,ée,—l:[6,l]. In
computing prod(Q,Agl,lg,Aa), minimal realiza-
tion should be performed to force the matrix to be

. ~ o A A A A .
stable.  Since Al/, Z[Fu/ —GWHW,GW,—HW,I] is
unstable, the computation of {c} can be done

similarly to that of {b}, and the result is

{cy_=1F, -G, H,.G,e,,HsMs - JsH,,,0]

::[FG’GG’H67O]’

(42)
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where Ms is the solution of FyMs— Ms(F, -
GV,I:IW):GSI:IV,. Let us define [F5,Gy,H7,J;7]=
prod([&w,AQ,Q‘l). In this computation, we always

observe that the auxiliary variables A (s) and A,(s)

are cancelled out when minimal realization is
performed for [F;,G;,H,,J5]. Since

by, +lck =

it follows that vecdT,,(s)=A,AQ7" ({b}, +{c})
= p}"Od([F7,G7,H7,J7], [Fé’GS’H8’O]) = [F9,G9,H9,
0]. In this computation, it should be confirmed that
Fy is a stable matrix after the minimal realization
operation.

4. CONCLUSION

State-space algorithms to compute the optimal one-
degree-of-freedom decoupling controller of Youla and
Bongiorno [4] were developed. To develop the state-
space algorithms, the characterization formula for the
class of all realizable decoupling controllers is
reformulated in terms of rational functions instead of
the polynomials that are favored by Youla and
Bongiorno [4]. The class of all stabilizing and
decoupling controllers is characterized in terms of

T(s) via the free diagonal parameter matrix A(s)

defined in (13). The optimal decoupling controller is
determined from these free parameters. The inner-
outer factorization and the Kharti-Rao product
expression for the application of the vectorization
operation to a diagonal matrix are the key steps to
obtain the optimal solution. A compact set of
assumptions is given to assure the existence of the
optimal solution is given.

A possible future research work is to adapt the work
in this paper to the standard plant model [11,13] that
can accommodate a wider range of control problems
including the nonunity feedback configuration.
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