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Kalman Filtering for Linear Time-Delayed Continuous-Time
Systems with Stochastic Multiplicative Noises

Huanshui Zhang, Xiao Lu, Weihai Zhang, and Wei Wang

Abstract: The paper deals with the Kalman stochastic filtering problem for linear continuous-
time systems with both instantaneous and time-delayed measurements. Different from the
standard linear system, the system state is corrupted by multiplicative white noise, and the
instantaneous measurement and the delayed measurement are also corrupted by multiplicative
white noise. A new approach to the problem is presented by using projection formulation and re-
organized innovation analysis. More importantly, the proposed approach in the paper can be
applied to solve many complicated problems such as stochastic He estimation, He control

stochastic system with preview and so on.
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1. INTRODUCTION

In recent years, stochastic filtering has become a
popular research topic, and it has been extensively
developed [6,8,14,20,21]. The stochastic filtering
problem as well as the stochastic control problem
have wide application in areas such as nuclear fission
and heat transfer, population models and immunology,
see [2,5] and references therein. There are mainly two
performances under which the filtering problem has
been considered, one is the A2 index, [10,12,13,16],
and the other one is He performance, see [6,8,
9,14,15]. The H2 filtering which is also termed as
Kalman filtering is to address the minimization of the
filtering error covariance. The so-called He
stochastic filtering is to design an estimator to
estimate the unknown state combination via output
measurement, which guarantees the L, gain (from the
external disturbance to the estimation error) to be less
than a prescribed level ¥ > 0.

[13] presented a robust recursive Kalman filtering
algorithm that addresses estimation problems arising
in linear time-varying systems with stochastic
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parametric uncertainties. In [8], the discrete-time He
stochastic filtering is considered and a filter of
Luenberger-type structure is given. A modified-
Riccati recursion which guarantees a given Heo
filtering level to minimize an upper-bound on the
covariance of the estimation error is presented.
However, dimension of the resulting modified Riccati
equation is larger than the origin system. In [15], the
stationary discrete-time linear stochastic filtering is
considered, where the stochastic uncertainty appears
in the dynamic, input and measurement matrices. A
filter which is based on the stochastic bounded real
lemma (BRL) of [9] is given in terms of LMIs.
However, the condition is only sufficient. In [14],
continuous-time stochastic linear plants which are
controlled by dynamic output feedback and subjected
to both deterministic and stochastic perturbations are
considered. A bounded real lemma is given and the
necessary and sufficient conditions for the existence
of a stabilizing compensator were obtained. Based on
the BRL proposed in [14], [4] gives the continuous-
time He stochastic filter, and the sufficient and
necessary condition for the existence of the solutions
in terms of LMIs is presented.

The above mentioned works are normal systems
without delay. For the case of time-delay, retarded
type linear systems robust L, filtering problem was
considered in [19], where delay-independent
conditions were derived in the form of LMIs. A more
general neutral type of systems and a less conservative
delay-dependent filter is given in [11]. Robust He
filtering of uncertain systems with state delays has
been considered in [17,18], only sufficient conditions
have been derived. For the above mentioned works,
the systems aren’t corrupted by multiple white noise
and delayless measurement can be used.
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In this paper, we consider the finite horizon robust
Kalman stochastic filtering problem for linear time-
varying continuous-time system with delayed
measurement, assuming that the system state is
corrupted by white noise, and the measurement
including the delayed measurement are also corrupted
by white noise. Different from the works for the
robust stochastic filter [13], delayed measurement is
introduced in this paper. By using re-organized
innovation analysis based on the knowledge of Krein
space [1,21-24], a new approach to the Kalman
stochastic filtering is proposed. With the proposed
new approach, the stochastic filter for time delayed
system is obtained. The solution is given in terms of
Riccati equation which has the same dimension as the
origin system.

The rest of the paper is organized as follows. The
system under consideration and the problem statement
are given in Section 2. Main results concluding the
Riccati equation and the optimal stochastic filter are
presented in Section 3. Some concluding remarks are
made in Section 4 as sensor fusion [7] and network
systems. The key is the re-organization of the
measurements and innovation.

2. PROBLEM STATEMENT
Consider the following stochastic differential
systems
x(t) = A@)x(t) + B(t) x(1) w(t) + u(r), €))]
Yo (1) = Co(1)x(t) + Dy (1) x(1) w(t) + v (2), 2
n (@) =G Ox@) + DO xOw() + v, (0), 3)

where f; =t-1,t<T, with T is the horizon, x()
eR" is the state, yo(t)eRP0 is measurement, and
» () e R™' is time-delayed measurements. u(r) € R”
is input sequence, w(z) e R' v,-(t)eRPI are white
noises of zero means. A(t)e R™", B(t)e R™",
Ci(t)e RP™ and D;(t)e RP™" are known time-
varying matrices. X(t)ltzo =X, and (u(t),u(s))z
03, ; (VilD),v (1)) = Ri(1)S, ;6. (w(e),w(s)) = M
(1), ; and <X0,X0>:Ho-

The stochastic filtering problem considered in the
paper for the system model (1)-(3) can be stated as

Problem P: Given the observation { Yo (r)‘ogg,
b2 (t)] ,g,gt}, find the optimal estimation of x(t),

denoted x(z

1), such that

min & {[x(t) - ﬁ(z|:)]' [ x(H) - (z lt)]}, (4)

where ¢ denotes the mathematical expectation.

Remark 1: The stochastic Kalman filtering
problem for discrete-time system has been considered
in [13], where delayless measurement is available.
However, in practice, it is inevitable that delay exists
in system, then we give the system model (1)-(3).
Such problem has important applications in many
engineering problems such as sensor fusion [7] and
network systems. The key is the re-organization of the
measurements and innovation.

Let y(¢) denote the observation of the system (4) at
time t and v(7) is the related observation noise at time
then we have

yo(f), 0<r<]

y(®) = {YOO‘)} - (5)
n (@)
vo(t), 0<t<i

wit) = {Vo(f)} . (6)
v (t)

Remark 2: For f</, the measurement is mainly
yo(?), and when =/, the

measurement is two channel y,(¢) and y; (7).

from one channel

Remark 3: In our paper, the main idea is to
reorganize the delayed measurements (that is y,(¢),
¥ (7)) into delay-free measurements from different

systems (y(f)), thus (5) and (6) can be easily
introduced. In this way, the system with delayed
measurement has been changed into a system with
two different measurements without delay.

For the convenience of discussion, we will consider
the case of ¢#>/, the case of #</ can be studied in

the same way.
3. MAIN RESULTS

In this section, we will introduce the re-organized
innovation in terms of which, the new stochastic filter
will be given [22].

3.1. Re-organized measurements
As is well known, given the measurement sequence

{y(s)logsst}, the optimal state filter i(t]t) is the
projection of x(#) onto the linear space spanned by the
measurement sequence, denoted by & {y(s)IOSSg}

[3]. In the following part, we shall re-organize the
measurement sequence and give a new observation
sequence which is delayless.

Lemma 1: The linear space of _?{y(s)|05m} is

equivalent to
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-7{?/2(5) o<s<t>21(8) tlSsSt}’ %
where
| Yo(s)
25“)‘{yus+n}’ ®)

21(s) =yo(s)

satisfies that
21(8) = Z(5)x(s) + 2, (s) x(s) W(s) + 7{(5), 9)
2(5) =B () X(5) + By ()x(s)w(s) +75(s)  (10)

with
| Gols) | Dy(s)w(s)
@)= {Cl(s) + 1}"% ()= {DI (s) W(s + 1)}’
= 00 | a6)=co), (1)
vi(s+1)

Z,(5) = Dy (s),71(8) = Vo ().

Moreover, #(s)is a white noise of zero means and
covariance matrices

Oy, (5) = diag { Ry (s), Ry (s + 1)},

12
0y(5) = Ry (s). 12

Proof: It is straightforward by re-organizing the
delayed observations.

Remark 4: In the above lemma, by re-organizing
all the measurements, the system with /-delay
measurements has been changed into a normal system
with measurement of (9) which does not involve
delays.

3.2. Re-organized innovation sequence

Before presenting the re-organized innovation, we
will give the following definitions first.

Definition 1: Given time instant ¢, the estimator
E(s,1) for s>1; is the optimal estimation of &(s)
given the observation

2{%(7)

o<r<t A fy<rsst- (13)

For s =1, cf(s,l) is the optimal estimation of &£(s)
given the observation

Z{% (T)'OSTSII ) (14)

Definition 2: Given time instant #, the estimator

£(s,2) fors<tp, £(s,2) isthe optimal estimation of
&(s) given the observation

‘7{‘%(1)|OSTSS}’ (15)

Remark 5: £ in ff(s,i) (i=1,2) in the above
two definitions may be Xor %, %.

Definition 3: Fori=2 and any s>0
#5(s) 2 %(s) - %(s,2), (16)
and for =1 and any s>0
Fi(t; +5)2 2t +5)— 4t +5,1), (17)

where #(s,i) is as defined in Definitions 2 and 3.

Thus we have the following lemma.
Lemma 2: The sequence %~ defined in the above
is mutually uncorrelated and

95(5)| o<s<t; 7t + 9| 053} (18)

spans the same linear space as &% {y(s)|055$t}.

Proof: By recalling [22,23] where the case for the
linear system without multiplicative noise is
considered, the proof can be established by applying a
similar argument as in [22,23].

Remark 6: It will be seen in the following
discussions, the re-organized innovation presented in
the subsection will play an important role in deriving
the Kalman filer for the system with measurement
delays.

From the definition (16)-(17), it is easy to observe
the relationships as

#3(s) = & (s)e(s) + 25 () x(s) + 73 (s), (19)
¥t +s)=7(t; +s5)e|(t; +5)
+ 721t + s)x(t; + ) w(t; +5) 20)
+7(t; +5),8 >0,

where
e, (s) = x(s5) — X(s,2), (21)
e (t; +5)=x(t +5)—-X(t +5,1). (22)

As in the standard Kalman filtering formulation,
A(s) and F(f, +s) play key role for computing

the filter for the system with measurement delays, it is
obvious

‘%(s)é<62(s)’62(s)>’szo’ (23)
Aty +5) 2 (e (t; +9),e,(t; +5)), (24)

e,(s) and e (#,+s) are as in (21) and (22),
respectively. [1(s) is the state covariance matrix and
is defined as

[T 2 (x(s),x(5)),s 2 0. (25)

Then we have the following theorem for computing
#(s) and A +5).
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Theorem 1: The one-step state predictive
covariance matrices defined in the above are
calculated by:

1) #(s) is the solution to the following Riccati

differential equation

d.#(s)

= A(5)7(5) + () A (s)
+ B[] (5)B'(5)M(s) (26)
— 55(5)0,, (8)73(5)
+0(5).9 0 =]To.

d[](s)

o AO[[@+[]®4'(S)
+B(s)[ [(9)B'(5)M(s) 27
+0). [ [ =]To-
where
H5(5) = [%(5)Co(S) + BES) [ [(9)Do(s) 8)
+B(8)Ci(s+1)]x O (5)
and

0, () = diag{Dy(s)] [(s)M(s)Dj(s) + Ry (s),

Di(s+ l)H(s)M(s +DD{(s+ D)+ R (s +D)}.
(29)
2) (1 +s)is the solution to the following Riccati
differential equation
d.g] (tl + S) ,
— Q% = At +)A{ +5)+ A +5)A( +5)
s
+ Bt + )] [ + )B4 + )M () + 5)
- +5)0,, (1 + )7l +5)
+ Q(tl + S),.% (tl) = ‘%(tl)a
(30)
dl 14+
H—;’i) =A@ +)[ [ +9+ [ +9)4@ +9)
s

+B(t; +)[ [t + )B4 +s)M (1 +5)

+0( + ),
(1)

where
K +5)y=[FA0 +9)g(1 + )+ Bty +5)
x[ 1@ +9)2{@ + )M +9)] (32)
x Q\;]l (4 +9)
with
O, +s)=2(f) + N [ +)M +5)2/(t; +5)
+0y(t; +5).

(33)

Proof: 1) The proof of (26)-(28):
By using Lemma 1 state-space model (1)-(3) can be
approximated as

X(IA+A)—x(iA) . ) .
A = A(GA)x(iA) + u(iA) (34)
+ B(iA)Yx(IA) W(iA),
%(i8) =% (1) X(iA) + % (A)X(iA) + 75 (iA), (35)

where

Co(iN)

b

BUn) = {q(m +§m)

Dy (iA) w(iA)
B (iA) =

Dy (iA + ém) W(iA + zA)}’ (36)

vo(iA)
730i8) = vl(iA+l iA) |

—i
t
Equivalently, (34) and (35) can be rewritten as

x(IA + A) =[I + AGAN)ATx(A) (37)

+ A[B(A)x(iA) w(iA) + u(iA)],

H(IA) = & (IA)X(IAY + 2 (IA) x(IA) + 75 (IA) (38)

with
o) 5

(u(iA),u(iA)> = BNA

(75(i0), 75 (iD))) =%5L i

. . M(3A
<w(1A), w(zA)> = %@J,

and <X0,x0> = Ho-

Applying discrete-time Kalman filtering
formulation to the above system, it follows that

RUA+A,2) =[] + AGNAR(IA,2)
+.%,, (1M (i), (39)
x(0,2)=0,
where #5(iA)is the innovation of process (iA)
which is given by
#3 (i) £ % (i0) - % (iA, 2)
= %(iA) — % () R(iA,2)
=5 (i0) ey (iA) + 5 (IA) x(ih)
+75(id),

(40)

where %(iA,2) and R(iA,2) are respectively the
optimal estimation of (iA,2) and x(iA) given
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observation %(sA)(s=i—1,i-2,...,0)associated with

u(s), w(s) and 75(sA) for s=i—-1,i-2,.,0, and
e, (iA) 2 x(iA) — R(iA,2).

Define

Q(iA) = diag{Do(iM)] J(GA)YM(iA) Dy (i),

Dy (iA + ém)]‘[ (AYM (A + éz’A)D{(iA + ém)}

then from (40), it can be easily seen

(78), 7)),
| &) a4y + 20 L )
R, (A)
=
that is
R,,, (i8) = A% (iR)4(i8)% (i) )

+Q(iA) + s (i),

where & (iA) £ (e, (iA),e,(iA))

u,w,v

lim  RGA)=Qs)+ 05 ()20, (5).  (43)

A—>0,iA—s

That is

Ow, (8) = diag {Dy ()] [ ()M (s)Dy’ (s)

+Ry(s), Di(s+ D[ [()M(s+1) (44)
xD'(s+ 1)+ Ri(s+1)},

which is (29).
From (37), (40), and (42), we know

Ry, (i0) T

H, (i8) = (x(iA+ A), %5 (iA)){

. -1
= ([1+ AGN]xGB), %5 (iA)}{RWZA(ZA)}

. —1
+(AB(A) x(GA)YW(iA), 5 (i A»{sz(m)}

. -1
+(Au(iA),%(iA)>{RW2A(1A)}

. -1
=1+ AGA)A] £ (M) (iA) {R“@T(ZA)}

. -1
+B(iA)H(iA)[D(’)(iA)M(iA),O]{R—WZ—A@] ,

(45)

thus
%, (iD)

A (46)
= [55/2,1 108), #312 (S)J 0iy (5),

where 7,(5) =BG () + BO] [(9Dh(s)M(s) and
H(s)=As)C(s+1).
Combining (40) with (39) yields

#(s) = lim
A—0

RGA+A,2) =[1+ AGA)]R3A,2) + Hp, (iA)

. a7
x[%(iA) - & (IA) (A, 2)],
which can be rewritten as
X(IA+ A,2) — x(iA, 2)
A
= A(IA) X(iA, 2) (48)
+ w[%(m) — % (iA)R(iA, 2)]
A —0,iA — s yields
dx(s,2) .
Y A(s)x(s,2) (49)
+. 7 (5)[%(s) - & (s)R(5,2)].
Note that
W5 (iA) = % (id) — & (i) R(iA, 2). (50)

Similarly, we have
#5(5) = %(s) — % (5)R(s,2). (51)

We shall compute .5(s) and H(s) as follow.
Combining (37) with (39) yields

e, (iA+ A) ZX(iA+ A) - R(IA + A, 2)
=[1 + A(iA)A]e, (iA)
+ AB(IA) x(iA) w(iA)
+ Au(in) — %, (iN#5 (iD).

(52)

Then B(iA) = (e, (iA),e,(iA)) can be given as
AUA+A)
=& (iA) + AB(IA)A'(iA)
+A(IN) B GA) + AGA) AN A(GA)A*  (53)
+AB(A] [GA)B'GAYM(A) + AQ(A)
- #p, (iIMR,,, (iM)F,, (iD)] A,
Thus

BIA+A) - F(iA)
A
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= B(iN)A'(IA) + A(iA) B (iA)
+B(iA)] [GAB' (MM (A) + Q(iA) (54)
— %, (iA)R,, (i85, (iA)/ A

A —0,iA > s yields

% = A()B(5) + B(5)A(S)
L BOTIEOB M)+ 06 (59)
— ()0, (5)75(5),
which is (26).

According to (37),we have
[1GA + A) = TTGA) + ATIGA) A'(IA) + AAGA) TI(GA)
+ AGA)TIGA)A'GA)A? + AQ(IA)
+ ABGA)TTGA)YB' (AYM(iA),

(56)
then

[1GA + AA) -11GA) _ [TGA)A'GA) + AGA)TI(A)

+ BGUA)TIGA)B'GA)M(A)
+Q(iA),
(57)
which is (27),this the first part is over.
2) The proof of (30)-(32)
Similar to the proof of part 1), it can be omitted.

3.3. Stochastic optimal filter
Now we are in the position to present the main
result in our paper, the following Kalman filtering
formulation for the measurement delayed system can
be easily given from the proof of Theorem 1.
Theorem 2: Consider the system (1)-(3), optimal

estimate i(t[t) is given by

&(tfe)=%(11), (58)

where f((t,l) is as defined in (13), which is computed

in the following steps:
Step 1: Calculate X(s,2) for s=1:

X2 _ 45)%(.2)
ds
+. 7, ()% (s) — % (s)X(s,2)], (59)

£(0,2) =0,
where #,(s) isasin (28).
Step 2: Compute X(#; +s,1) for 0<s</withthe
initial value %(7,2)

d&(t +s5,1)

ds

+27 (4 + 9% +5)
-t + )X +5,1)],
X, = X(1,2),

where % (f; +s)is as in (32).

Step 3: The estimator X(z,1) is computed from Step
2 when s=I.

Proof: (58) is from (13), (59) is just (49), and (60)
is from Theorem 1.

Remark 7: It can be easily seen that, the new
derived stochastic filter is different from the filter
from the system without delayed measurement. The
new filter involves two parts, for each part, two
Riccati equations will be used, but the dimension of
the Ricatti equations is the same as the origin system.

Remark 8: It should be noted that the proposed
approach has given the stochastic optimal filter for
continuous-time systems with delayed measurements
by the technique of re-organized innovation analysis.
The advantage of the proposed approach is mainly the
computation burden, since it has the same dimension
as the origin system. However, the performance of the
optimal filter is same as traditional approach.

4. NUMERICAL EXAMPLES

In this section, an example will be given to show
the efficiency of the proposed approach. Consider the
system (1)-(3) with / = 0.4s, and

—4 -3 05 2
A(t):[1 _J, B(r)=(1 J,

Co()=[0.5t 1], Cl() =]t 3],
Dy =[1 1], D(e)=[05 2.

The initial state value x(0)=[0.5 1], x(0)=[0 0]'
and u(t), w(t),vy(?), and vi(?) are uncorrelated white

noises with zero means and unity covariance matrices,
ie.,

R =1, 90 =1,M@#) =1, Ry(t) =R (1) =1.
Our aim is to calculate the optimal estimate k(t|t) of

the signal x(7) based on observation {yo(z')logg,

y](r)|,STS,} In this example, we assume that

t>20.4s. When 0<7<0.4s, the problem becomes

a standard Kalman filtering for the system without the
delayed measurement. To compute the filter, we re-

organize the linear space z{{yo(r)‘ogrg’yl(z'),

I<r<t }} equivalently as the following linear space

LB 0<r< 3% (O <r<t ) (61)
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where £, =¢t-0.4, and the new observation #(7r)
(i=12) are

5@ =ly5 @ ¥ @+04], )
#(7) =0 (7),

satisfying
(1) = E(@D)X(D)+ (DX@) WD) +77(x),  (63)
%) =B+ HOXD)+75(0),  (64)

with

0.5
%(r)z( Tr ;} %(T):[O‘ST TJ,

~ w(7) w(7)
%(T)_{O.SW(T+O.4) 2w(r+0-4)]’ (65)
~ | vo(®
F()=01 1}, %(1)_[Vl(z’+0.4)}

71(t) = vy (7),

and #(t)(i=1,2) are white noises with zero means
and unity covariance Q% ®=1.

Having obtained the re-organized observation
sequence, the computation of the optimal filter ﬁ(tlt)
can be summarized by three steps below:

Step 1: Compute 8" by (26) with / = 0.4s and
initial value %3 =0. Compute x(r,2)by (60) with
initial value X(0,2)=0.

q

Step 2: Note 4 Eﬂjtl and  x(4,1) = X(4,2).

ﬁ’t’ " and X(t; +1,1) are calculated by (30) and (61),

respectively, with i=1 and initial values ﬂf’l 592’1

Step 3: Calculate the optimal filter X(s|r) in (58).

In the simulation, the sampling period is 7= 0.02s
Fig. 1. The estimate for x;(f) with delayed
measurement and time horizon is 7= 4s.

We denote >"<(t|t):[§<1(t t),)”(z(t|t)]'. The tracking

performance of the filter )Z(t|t) with the time

delayed measurement is given in Fig. 1 whereas
)Z(t|t) is given in Fig. 2. In Fig. 3, the comparison of

the sum of error variance between the cases for the
system with delay-free measurement and time-delayed
measurement is given. In Figs. 1 and 2, the solid line
denotes the true signal and the dashed line is its
estimate. In Fig. 3, the solid line denotes the sum of
error variance for the case when only the delay free
measurement is used and the dashed line is the sum of
error variance for the case when the delay free

the x1 with delay

06.
!
0.4(
0.2+
< 1 NI
0 A e g A
. X 2 ~ ; e
v hr/ \“. -
RVAY
0.2 B
04. - AN
-0.6:
08- . . . . . . : .
0 0.5 1 1.5 2 2.5 3 3.5 4
t
Fig. 1. The estimate for x;(f) with delayed,
measurement where 1 is the original state
and 2 is the estimate.
the x2 with delay
1.2 . . .
1
< .
08 - -\,
\
06 '
\\
0.4 :
-
0.2 S .
\A“,A:‘A\ < 2 ) .
M, SN A
0 . \\x/‘\ g .\V’V\} f/ M \
0.2 .
0 0.5 1 1.5 2 25 3 35 4

Fig. 2. The estimate for x,(f) with delayed measure-
ment where 1 is the original state and 2 is the
estimate.

the sum of the variance with delay and without delay

o o5 i s 2 25 3 35 4
t

Fig. 3. The comparison for the sum of error

covariance where 3 is for without delay and

4 is for with delayed measurement.
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measurement and the time-delayed measurement is
used. It can be observed that with additional delayed
measurement, the filtering performance is
significantly improved as expected.

5. CONCLUSION

The paper has studied the stochastic Kalman
filtering problem for a linear continuous-time system
with  both  instantaneous and time-delayed
measurements.  Multiplicative ~ white noise s
introduced in the state-space model. By using re-
organized innovation analysis, the new stochastic
filter is presented. The solution to the derived Kalman
filter is given in terms of Riccati differential equations.
More importantly, the proposed approach in the paper
can be applied to solve many complicated problems
such as stochastic He estimation [20], He control
stochastic system with preview and so on.

REFERENCES

[1] B. Hassibi, A. H. Sayed, and T. Kailath,
Indefinite-Quadratic Estimation and Control A
unified Approach to H, and He Theories,
Prentice-Hall, Englewood. Cliffs, NJ, 1999.

[2] O. L. V. Costa and C. S. Kubrusly, “State-
feedback Ho control for discrete-time infinite-
dimensional  stochastic  bilinear  systems,”
Journal of Mathematical Systems, Estimation
and Control, vol. 6, pp. 1-32, 1996.

[3]1 B. D. O. Anderson and J. B. Moore, Optimal
Filtering, Prentice-Hall, Englewood, Cliffs, NJ,
1979.

[4] E. Gershon, J. N. Limebeer, U. Shaked, and 1.
Yaesh, “He filtering of continuous-time linear
systems with stochastic parameter uncertainties,”
IEEE Trans. on Automatic Control, vol. 46, no.
11, pp. 1788-1793, 2001.

[5] M. M. Mohler and W. J. Kolodziej, “An
overview of stochastic bilinear control process,”
IEEE Trans. on System, Man and Cybernetics,
vol. 10, no. 12, pp. 913-919, 1980.

[6] V. Dragan and A. Stoica, “A y -attenuation
problem  for  discrete-time  time-varying
stochastic systems with multiplicative noise,”
Reprint Series of the Institute of Mathematics of
Romanian Academy, no. 10, 1998.

[71 L. A. Klein, Sensor and Data Fusion Concepts
and Applications, SPIE Press, 1999.

[8] E. Gershon, U. Shaked, and I. Yaesh, “H« con-
trol and filtering of discrete-time stochastic
systems with multiplicative noise,” Automatica,
vol. 37, pp. 409-417, 2001.

[9] A. E. Bouhtouri, D. Hinriechsen, and A. J./
Pritchard, “He type control for discrete-time
stochastic system,” Int. J Robust Nonlinear

Control, vol. 9, pp. 923-948, 1999.

[10] R. M. Oisiovici and S. L. Cruz, “State estimation
of batch distillation columns using an extended
Kalman filter,” Chemical Engineering Science,
vol. 55, pp. 4667-4680, 2000.

[11] E. Fridman, U. Skaked, and L. H. Xie, “Robust
H?2 filtering of linear systems with time delays,”
Proc. of the 41st IEEE Conf. Decision Contr.,
USA, Dec. 2002.

[12] Y. Chen and B. S. Chen, “Minimax robust
deconvolution filters under stochastic parametric
and noise uncertainties,” IEEE Trans. on Signal
Processing, vol. 42, pp. 32-45, 1994,

[13] F. Wang and V. Balakrishnan, “Robust Kalman
filters for linear time-varying systems with
stochastic parametric uncertainties,” /EEF Trans.
on Signal Processing, vol. 50, no. 4, pp. 803-813,
2002.

[14] D. Hinrichsen and A. J. Pritchard, “Stochastic
Ho,” SIAM J. Control Optim., vol. 36, pp. 1504-
1538, 1998.

[15] E. Gershon, U. Shaked, and I. Yaesh, “Robust
He estimation of stationary discrete-time linear
processes with stochastic uncertainties,” Systems
and Control Letters, vol. 45, pp. 257-269, 2002.

[16] L. H. Xie, Y. Soh, and C. E. de Souza, “Robust
Kalman filtering for uncertain discrete-time
systems,” [EEE Trans. on Automatic Control,
vol. 39, pp. 1310-1314, 1994.

[17] C. E. De Souza and L. H. Xie, “Delay-dependent
robust He control of uncertain linear state-
delayed systems,” Automatica, vol. 35, pp.
1313-1321, 1999.

[18] C. E. De Souza, R. Palhares, and P. Peres,
“Robust He filtering for uncertain linear
continuous-time systems with multiple time-
varying state delays: An LMI approach,” Proc.
of the 38th CDC, Phoenix, Arizona, USA, Dec.
1999.

[19] M. Mahmound, N. Muthairi, and S. Bingulac,
“Robust Kalman filtering for continuous time-
lag systems,” Systems and Control Letters, vol.
38, pp- 309-319, 1999.

[20] W. Zhang, B. Chen, and C. Tseng, “Robust Hw
filtering for nonlinear stochastic systems,” /EEE
Trans. on Signal Processing, vol. 53, no. 2, pp.
589-598, 2005.

[21] X. Lu, L. Xie, H. Zhang, and W. Wang, “Robust
Kalman filtering for discrete-time systems with
measurement delay,” IEEE Trans. on Circuits
and Systems Part II, vol. 54, no. 6, pp. 522-526,
2007.

[22] ‘H. Zhang and D. Zhang, “Finite horizon He
fixed-lag smoothing for time-varying continuous
systems,” IEEE Trans. on Circuits and Systems
Part 11, vol. 51, no. 9, pp. 496-499, 2004.



Kalman Filtering for Linear Time-Delayed Continuous-Time Systems with Stochastic Multiplicative Noises 363

[23] H. Zhang, X. Lu, and D. Cheng, “Optimal
estimation for continuous-time systems with
delayed measurements,” IEEE Trans. on
Automatic Control, vol. 51, no. 5, pp. 823-827,
2006.

[24] X. Lu, H. Zhang, W. Wang, and K. L. Teo,
“Kalman filtering for multiple time-delay

systems,” Automatica, vol. 41, no. 8, pp. 1455-
1461, 2005.

Huanshui Zhang graduated in
Mathematics from the Qufu Normal
University in 1986 and received the
M.Sc. and Ph.D. degrees in Control
Theory and Signal Processing from the
Heilongjiang University, P. R. China,
and Northeastern University, P. R.
China, in 1991 and 1997, respectively.
He worked as a Postdoctoral Fellow at
the Nanyang Technological University from 1998 to 2001
and Research Fellow at Hong Kong Polytechnic University
from 2001 to 2003. He joined Shandong Taishan College in
1986 as an Assistant Professor and became an Associate
Professor in 1994. He joined Shandong University in 1999
as a Professor. Currently he is a Professor of Shandong
University. His interests include optimal estimation, robust
filtering and control, time delay systems, singular systems,
wireless communication and signal processing.

Xiao Lu received the B.S. degree from
College of Electron and Information,
Dalian Jiaotong University in 1998. He
is now a Teacher in Shandong
University of Science and Technology,
and he is toward a Ph.D. degree of
Dalian University of Technology. His
interests include optimal estimation
and control, robust filtering and control,
time-delay systems.

Weihai Zhang received the M.S.
degree from Hangzhou University, and
the Ph.D. degree from Zhejiang
University, Hangzhou, China, in 1994
and 1998, respectively. From August
1998 to May 2001, he worked at
Shandong Institute of Light Industry as
an Associate Professor. He was a
Postdoctoral Researcher from May
2001 to July 2003 at National Tsing Hua University,
Hsinchu, Taiwan. From 2004 to 2005, he did research work
as a Research Fellow at City University of Hong Kong and
Shenzhen Graduate School of Harbin Institute of
Technology, respectively. He is currently a Professor of
Shandong University of Science and Technology. His
research interests include linear and nonlinear stochastic
control, robust filtering and stochastic stability.

Wei Wang obtained the Bachelor,
Master Degree and Ph.D. in Industrial
Automation from Northeastern Univer-
sity, China, in 1982, 1986, and 1988
respectively. He is presently a
Professor and Director of Research
Center of Information and Control,
Dalian University of Technology,
China. Previously he was a Post-doctor
at the Division of Engineering Cybernetics, Norwegian
Science and Technology University (1990-1992), Professor
and Vice Director of Research Center of Automation,
Northeastern University, China (1995-2000). His research
interests are in non-linear control, predictive control,
robotics, computer integrated manufacturing systems, and
computer control of industrial process. He was awarded the
National Distinguished Young Fund of the National Natural
Science Foundations of China in 1998. He has published
over 100 papers in international and domestic journals. He
is currently the Chairman of IFAC Technical Committee
(4.4) of Cost Oriented Automation (2005-2008).

o



