Involvement of Extracellular Matrix and Integrin-like Proteins on Conidial Adhesion and Appressorium Differentiation in Magnaporthe oryzae

  • Bae, Cheol-Yong (Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Agricultural Biomaterials, Seoul National University) ;
  • Kim, Soon-Ok (Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Agricultural Biomaterials, Seoul National University) ;
  • Choi, Woo-Bong (Department of Biotechnology and Bioengineering/Biomaterial Control, Dong-Eui University) ;
  • Lee, Yong-Hwan (Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Agricultural Biomaterials, Seoul National University)
  • Published : 2007.07.31

Abstract

Conidial adhesion and appressorium formation of Magnaporthe oryzae on the rice surface are important early events in the infection process. As an initiative step to understand the mechanisms underlying these cellular processes at a biochemical level, the effect of a human fibronectin antibody (HFA) and RGD peptides on conidial adhesion and appressorium formation was evaluated. HFA inhibited conidial adhesion and appressorium formation in a dosage-dependent manner. RGD peptides also inhibited these cellular events. Conidial adhesion and appressorium formation inhibited by RGD peptides were restored by chemicals involved in the cyclic AMP-dependent signaling pathway. These results suggest that extracellular matrix proteins might be involved in conidial adhesion and appressorium formation through integrin-like receptor mediation and modulation of cAMP-dependent signaling in the cells.

Keywords

References

  1. Ahn, N., S. Kim, W. Choi, K. H. Im, and Y H. Lee. 2004. Extracellular matrix protein gene, EMP 1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthegrisea. Mol. Cells 17: 166-173
  2. Bauer, J. S., C. L. Schreiner, F. G. Giancotti, E. Ruoslahti, and R. L. Juliano. 1992. Motility of fibronectin receptordeficient cells on fibronectin and vitronectin: Collaborative interactions among integrins. J. Cell Biol. 116: 477-487 https://doi.org/10.1083/jcb.116.2.477
  3. Brakebusch, C. and R. Fassler. 2003. The integrin-actin connection, an etemallove affair EMBO J. 22: 2324-2333 https://doi.org/10.1093/emboj/cdg245
  4. Cho, J. Y, G. J. Choi, S. W. Lee, K. S. Jang, H. K. Lirn, C. H. Lim, S. O. Lee, K. Y Cho, and J. C. Kim. 2006. Antifungal activity against Colletotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 16: 280-285
  5. Coppolino, M. G. and S. Dedhar. 2000. Bi-directional signal transduction by integrin receptors. Int. J. Biochem. Cell Biol. 32: 171-188 https://doi.org/10.1016/S1357-2725(99)00043-6
  6. Correa, A. J., R. C. Staples, and H. C. Hoch. 1996. Inhibition of thigmostimulated cell differentiation with RGD-peptides in Uromyces germlings. Protoplasma 194: 91-104 https://doi.org/10.1007/BF01273171
  7. Epstein, L. and R. L. Nicholson. 1997. Adhesion of spores and hyphae to plant surfaces, pp. 11-25. In G. C. Carrol and P. Tudzynski (eds.), The Mycota V, Part A. Springer-Verlag, Berlin/Heidelberg, Germany
  8. Gale, C., D. Finkel, N. Tao, M. Meinke, M. McClellan, J. Olson, K. Kendrick, and M. Hostetter. 1996. Cloning and expression of a gene encoding an integrin-like protein in Candida albicans. Proc. Natl. Acad. Sci. USA 93: 357-361
  9. Gale, C. A., C. M. Bendel, M. McClellan, M. Hauser, J. M. Becker, J. Berman, and M. K. Hostetter. 1998. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INTI. Science 279: 1355-1358 https://doi.org/10.1126/science.279.5355.1355
  10. Giancotti, F. G. and E. Ruoslahti. 1999. Integrin signaling. Science 285: 1028-1032 https://doi.org/10.1126/science.285.5430.1028
  11. Gilbert, R. D., A. M. Johnson, and R. A. Dean. 1996. Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea. Physiol. Mol. Plant Pathol. 48: 335-346 https://doi.org/10.1006/pmpp.1996.0027
  12. Gruenheid, S. and B. B. Finlay. 2003. Microbial pathogenesis and cytoskeletal function. Nature 422: 775-781 https://doi.org/10.1038/nature01603
  13. Hamer, J. E., R. J. Howard, F. G. Chumley, and B. Valent. 1988. A mechanism for surface attachment in spores of a plant pathogenic fungi. Science 239: 288-290 https://doi.org/10.1126/science.239.4837.288
  14. Hostetter, M. K., N. J. Tao, C. Gale, D. J. Herman, M. McClellan, R. L. Sharp, and K. E. Kendrick. 1995. Antigenic and functional conservation of an integrin Idomain in Saccharomyces cerevisiae. Biochem. Mol. Med. 55: 122-130 https://doi.org/10.1006/bmme.1995.1042
  15. Hynes, R. O. 1987. Integrins: A family of cell surface receptors. Cell 48: 549-554 https://doi.org/10.1016/0092-8674(87)90233-9
  16. Hynes, R. O. 1992. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69: 11-25 https://doi.org/10.1016/0092-8674(92)90115-S
  17. Hynes, R. O. 2002. Integrins: Bidirectional, allosteric signaling machines. Cell 110: 673-687 https://doi.org/10.1016/S0092-8674(02)00971-6
  18. Jang, K.-I., M.-G. Kim, S.-D. Ha, K.-S. Kim, K.-H. Lee, D.-H. Chung, C.-H. Kim, and K.-Y Kim. 2007. Morphology and adhesion of Campylobacter jejuni to chicken skin under varying conditions. J. Microbiol. Biotechnol. 17: 202-206
  19. Jelitto, J., H. Page, and N. Read. 1994. Role of external signals in regulating the pre-penetration phase of infection by the rice blast fungus, Magnaporthe grisea. Planta 194: 471-477 https://doi.org/10.1007/BF00714458
  20. Kaminskyj, S. G. and J. B. Heath. 1995. Integrin and spectrin homologues, and cytoplasm-wall adhesion in tip growth. J. Cell Sci. 108(Pt 2): 849-856
  21. Kim, S., I. P. Ahn, H. S. Rho, and Y. H. Lee. 2005. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol. Microbiol. 57: 1224-1237 https://doi.org/10.1111/j.1365-2958.2005.04750.x
  22. Klotz, S. A. and R. L. Smith. 1991. A fibronectin receptor on Candida albicans mediates adherence of the fungus to extracellular matrix. J. Infect. Dis. 163: 604-610 https://doi.org/10.1093/infdis/163.3.604
  23. Klotz, S. A., R. L. Smith, and B. W. Stewart. 1992. Effect of an arginine-glycine-aspartic acid-containing peptide on hematogenous candidal infections in rabbits. Antimicrob. Agents Chemother. 36: 132-136 https://doi.org/10.1128/AAC.36.1.132
  24. Lee, Y. H. and R. A. Dean. 1994. Hydrophobicity of contact surface induces appressorium formation in Magnaporthe grisea. FEMS Microbiol. Lett. 115: 71-75 https://doi.org/10.1111/j.1574-6968.1994.tb06616.x
  25. Lim, J. K., H. J. Seo, E. O. Kim, M. Meydani, and J. D. Kim. 2006. Identification of anti-angiogenic and anti-cell adhesion materials from halophilic enterobacteria of the Trachurus japonicus. J. Microbiol. Biotechnol. 16: 1544-1553
  26. Nett, J. and D. Andes. 2006. Candida albicans biofilm development, modeling a host-pathogen interaction. Curr. Opin. Microbiol. 9: 340-345 https://doi.org/10.1016/j.mib.2006.06.007
  27. Nicholson, R. L. and L. Epstein. 1991. Adhesion of fungi to plant surfaces, pp. 3-23. In G T. Cole and H. C. Hoch (eds.), The Fungal Spore and Disease lnitiation in Plants and Animals. Plenum Press, New York, U.S.A
  28. Ruoslahti, E. 1996. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12: 697-715 https://doi.org/10.1146/annurev.cellbio.12.1.697
  29. Ruoslahti, E. and M. D. Pierschbacher. 1987. New perspectives in cell adhesion: RGD and integrins. Science 238: 491-497 https://doi.org/10.1126/science.2821619
  30. Ruoslahti, E. and J. C. Reed. 1994. Anchorage dependence, integrins, and apoptosis. Cell 77: 477-478 https://doi.org/10.1016/0092-8674(94)90209-7
  31. Schwarz-Linek, U., J. M. Werner, A. R. Pickford, S. Gurusiddappa, J. H. Kim, E. S. Pilka, J. A. Briggs, T. S. Gough, M. Hook, I. D. Campbell, and J. R. Potts. 2003. Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper. Nature 423: 177-181 https://doi.org/10.1038/nature01589
  32. Sung, W. S., H. J. Jung, I. S. Lee, H. S. Kim, and D. G. Lee. 2006. Antimicrobial effect of furaneol against human pathogenic bacteria and fungi. J. Microbiol. Biotechnol. 16: 349-354
  33. Talbot, N. J. 2003. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57: 177-202 https://doi.org/10.1146/annurev.micro.57.030502.090957
  34. Xiao, J.-Z., A. Ohshima, T. Kamakura, T. Ishiyama, and I. Yamaguchi. 1994. Extracellular glycoprotein(s) associated with celllular differentiation in Magnaporthe grisea. Mol. Plant Microbe Interact. 7: 639-644 https://doi.org/10.1094/MPMI-7-0639
  35. Xiao, J. Z., T. Watanabe, T. Kamakura, A. Ohshima, and I. Yamaguchi. 1994. Studies on cellular differentiation of Magnaporthe grisea. Physicochemical aspects of substratum surfaces in relation to appressorium formation. Physiol. Mol. Plant Pathol. 44: 227-236 https://doi.org/10.1016/S0885-5765(05)80007-4