Tylosin Production by Streptomyces fradiae Using Raw Cornmeal in Airlift Bioreactor

  • Choi, Du-Bok (Biotechnology Laboratory, B-K Company Ltd.) ;
  • Choi, On-You (United Graduate School of Agricultural Science, Shizuoka University) ;
  • Shin, Hyun-Jae (Department of Chemical & Biochemical Engineering, Chosun University) ;
  • Chung, Dong-Ok (Department of Culinary Art, Chodang University) ;
  • Shin, Dae-Yewn (Department of Environmental Engineering, Chosun University)
  • Published : 2007.07.31

Abstract

Using a 50-1 airlift bioreactor, for the effective production of tylosin from Streptomyces fradiae TM-224 using raw cornmeal as the energy source, various environmental factors were studied in flask cultures. The maximum tylosin concentration was obtained at $32^{\circ}C$ and pH between 7.0 and 7.5. When seed was inoculated after 24 h of culture, the maximum tylosin concentration, 5.7 g/l, was obtained after 4 days of culture. Various concentrations of raw cornmeal were tested to investigate the optimum initial concentration for the tylosin production. An initial raw cornmeal concentration of 80 g/l gave the highest tylosin concentration, 5.8 g/l, after 5 days of culture. Of the various nitrogen sources, soybean meal and fish meal were found to be the most effective for the production of tylosin. In particular, with the optimal mixing ratio, 12 g/l of soybean meal to 14 g/l of fish meal, 7.2 g/l of tylosin was obtained after 5 days of culture. To compare raw cornmeal and glucose for the production of tylosin in the 50-1 airlift bioreactor for 10 days, fed-batch cultures were carried out under the optimum culture conditions. When raw com meal was used as the energy source, the tylosin production increased with increasing culture time. The maximum tylosin concentration after 10 days of culture was 13.5 g/l, with a product yield from raw cornmeal of 0.123 g/g of consumed carbon source, which was about 7.2 times higher than that obtained when glucose was used as the carbon source.

Keywords

References

  1. Alicia, Z. S., O. S. Blanca, G. H. Mariana, G. C. Magdalena, and B. Alexandro. 2006. Rapid production of Candida albicans chlamydospores in liquid media under incubation conditions. Jpn. J. Mycol. 47: 231-234 https://doi.org/10.3314/jjmm.47.231
  2. Benslimane, C., A. Lebrihi, A. Lounes, G. Lefebver, and P. Germain. 1995. Influence of dextrins on the assimilation of yeast extract amino acid in culture of Streptomyces ambofaciens producer of spiramycin. Enzym. Microb. Technol. 17: 1003-1013 https://doi.org/10.1016/0141-0229(95)00029-1
  3. Choi, D. B. 1998. Studies on efficient tylosin production from actinomyces using vegetable oil as the sole carbon source, Doctor thesis. Gifu University. Japan
  4. Choi, D. B., E. Y. Park, and M. Okabe. 1998. Effect of rapeseed oil on activity of methyl malonyl-CoA carboxyltransferase in culture of Streptomyces fradiae. Biosci. Biotechnol. Biochem. 62: 902-1110 https://doi.org/10.1271/bbb.62.902
  5. Choi, D. B., E. Y. Park, and M. Okabe. 1998. Improvement of tylosin production from Streptomyces fradiae culture by decreasing the apparent viscosity in an air-lift bioreactor. J. F ermen. Bioeng. 86: 413 -417 https://doi.org/10.1016/S0922-338X(99)89016-3
  6. Choi, D. B., E. Y. Park, and M. Okabe. 2003. Dependence of apparent viscosity on mycelial morphology of Streptomyces fradiae culture in various nitrogen sources. Biotechnol. Prog. 16: 525-532 https://doi.org/10.1021/bp000056x
  7. Choi, D. B., K. A. Cho, and W. S. Cha. 2004. Effect of triton X-100 on compactin production from Penicillium citrinum. Biotechnol. Bioproc. Eng. 9: 171-178 https://doi.org/10.1007/BF02942288
  8. Choi, D. B., O. Y. Choi, O. R. Moon, M. R. Yoon, S. N. Ji, and D. Y. Shin. 2005. Tylosin production by mutant resistant to oleic acid. Kor. J. Env. Hlth. 31: 360-366
  9. Choi, D. B., S. Tamura, Y. S. Park, M. Okabe, Y. Seriue, and S. Takeda. 1996. Efficient tylosin production from Streptomyces. J. Ferment. Bioeng. 82: 183-186 https://doi.org/10.1016/0922-338X(96)85047-1
  10. Ei-Naggar, M. Y., S. A. EI-Assar, and S. M. Abdul-Gaead. 2006. Meroparamycin production by newly isolated Streptomyces sp. strain MAR01. J. Microbiol. 44: 432-438
  11. Eguchi, Y. and Y. Matsuo. 1999. Divergence of the regulation of alpha-amylase activity in Drosophila melanogaster, Drosophila funebris, and Drosophila saltans. Biochem. Gene 37: 41-52 https://doi.org/10.1023/A:1018714000671
  12. Flores, M. E. and S. Sanchez. 1985. Nitrogen regulation of erythromycin formation in Streptomyces erythreus. FEMS Microb. Lett. 26: 191-194 https://doi.org/10.1111/j.1574-6968.1985.tb01589.x
  13. Glassener, D., J. Hettenhaus, and T. Schechinger. 1999. Perspectives on New Corops and New Uses, pp. 74-82. ASHS Press, Alexandria, VA
  14. Han, J. R. 2003. Solid-state fermentation of cornmeal with the basidiomycete Hericium erinaceum for degrading starch and upgrading nutritional value. Int. J. Food Microbiol. 80: 61-66 https://doi.org/10.1016/S0168-1605(02)00122-8
  15. Han. J. R., C. H. An, and J. M. Yuan. 2005. Solid-state fermentation of cornmeal with the basidiomycete Ganoderma lucidum for degrading starch and upgrading nutritional value. J. Appl. Microbiol. 99: 910-915 https://doi.org/10.1111/j.1365-2672.2005.02672.x
  16. Huang, G, M. Okabe, P. Kahar, H. Tsunekawa, and Y. S. Park. 2001. Optimization of tylosin feeding rate profile in production of acetyl-isovaleryl tylosin from tylosin by Streptomyces thermotolerans YN554. J. Biosci. Bioeng. 91: 504-508 https://doi.org/10.1263/jbb.91.504
  17. Jia, S., G. Chen, K. Prihardi, D. B. Choi, and M. Okabe. 1999. Effect of soybean oil on oxygen transfer in the production of tetracycline with an airlift bioreactor. J. Biosci. Bioeng. 87: 825-827 https://doi.org/10.1016/S1389-1723(99)80162-5
  18. Jun, L., L. Liming, W. Wenxu, and C. Peilin. 1998. Kinetics of cellulose enzyme hydrolysis and simultaneous saccharification and lactic acid fermentation process. J. Chem. Ind. Eng. 49: 161-169
  19. Kim, D. J., D. H. Ahn, and D. L. Lee. 2005. Effects of free ammonia and dissolved oxygen on nitrification and nitrite accumulation in biofilm airlift reactor. Korean J. Chem. Eng. 22: 85-90 https://doi.org/10.1007/BF02701467
  20. Kim, H. M., S. Y. Park, K. S. Ra, K. B. Koo, J. W. Yun, and J. W. Choi. 2006. Enhanced production of exopolysaccharides by fed-batch culture of Ganoderma resinaceum DG-6556. J. Microbiol. 44: 233-242
  21. Kim, J. C., S. W. Kang, J. S. Lim, Y. S. Song, and S. W. Kim. 2006. Simulation of cephalosporin C production by Acremonium chrysogenum M35 with fatty acid. J. Microbiol. Biotechnol. 16: 1120-1124
  22. Latif, F. and I. R. Mohammad. 2001. Production of ethanol and xylitol from coencobs by yeast. Bioresour. Technol. 77: 57-63 https://doi.org/10.1016/S0960-8524(00)00134-6
  23. Lim, K. H., S. W. Park, and E. J. Lee. 2005. Effect of temperature on the performnce of a biofilter inoculated with Pseudomonas putida to treat waste-air containing ethanol. Korean J. Chem. Eng. 22: 922-926 https://doi.org/10.1007/BF02705676
  24. Magasanik, B. 1976. Classical and postclassical modes of regulation of the synthesis of degradative bacterial enzymes. Prog. Nucleic Acid Res. Mol. Biol. 17: 99-115 https://doi.org/10.1016/S0079-6603(08)60067-7
  25. Nakamoto, S. 1998. Promotion of chlamydoconidium formation in Candida albicans by corn meal broth incubation. Med. Mycol. 36: 123-125
  26. Nurdan, E. S. and A. Yesim. 2000. Comparison of different pretreatments in ethanol fermentation using corncob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae. Biotechnol. Lett. 22: 855-859 https://doi.org/10.1023/A:1005663313597
  27. Omura, S. and Y. Tanaka. 1986. Macrolide Antibiotics, Chemistry, Biology, and Practice, pp. 199-229. Academic Press, Orlando
  28. Park, H., K. S. Lee, S. M. Park, K. W. Lee, A. Y. Kim, and Y. M. Chi. 2005. Relationship between enhancement of electrostriction and decrease of activation energy in porcine pancreatic lipase catalysis. J. Microbiol. Biotechnol. 15: 587-594
  29. Park, K. N., H. H. Kim, S. J. Maken, Y. S. Kim, B. G. Min, and J. W. Park. 2005. Characteristics of the lipase from Candida rugosa modified with copolymers of polyethylene derivative and maleic acid anhydride. Korean J. Chem. Eng. 22: 412-417 https://doi.org/10.1007/BF02719420
  30. Prasad, K. K., S. V. Mohan, Y. V. Bhaskar, S. V. Ramanaiah, V. L. Babu, B. R. Pati, and P. N. Sarma. 2005. Laccase production using Pleurotus ostreatus 1804 immobilized on PUF cubes in batch and packed bed reactors: Influence of culture conditions. J. Microbiol. 43: 301-307
  31. Qureshi, N., X. L. Li, S. Hughes, B. C. Saha, and M. A. Cotta. 2006. Butanol production from com fiber xylan using Clostridium acetobutylicum. Biotechnol. Prog. 22: 673-680 https://doi.org/10.1021/bp050360w
  32. Seno, E. T. and C. R. Hutchinson. 1986. In the Bacteria, pp. 231-279. Academic Press, Orlando
  33. Silva, T. M., A. A. Derlene, A. F. A. Carvalho, R. D. Silva, M. Boscolo, and E. Gomes. 2005. Production of saccharogenic and dextrinogenic amylase by Rhizomucor pusillus A 12.36. J. Microbiol. 43: 561-568
  34. Yin, P., N. Nishiya, Y. Kosakai, K. Yahira, E. Y. Park, and M. Okabe. 1978. L (+)- Lactic acid production by repeated batch culture of Rhizopus oryzae in air lift bioreactor. J. Ferment. Bioeng. 85: 96-100 https://doi.org/10.1016/S0922-338X(97)80361-3