Recognition of Handwritten Numerals using SVM Classifiers

SVM 분류기를 이용한 필기체 숫자인식

  • 박중조 (경상대학교 제어계측공학과) ;
  • 김경민 (전남대학교 전자통신전기공학과)
  • Published : 2007.07.30

Abstract

Recent researches in the recognition system have shown that SVM (Support Vector Machine) classifiers often have superior recognition rates in comparison to other classifiers. In this paper, we present the handwritten numeral recognition algorithm using SVM classifiers. The numeral features used in our algorithm are mesh features, directional features by Kirsch operators and concavity features, where first two features represent the foreground information of numerals and the last feature represents the background information of numerals. These features are complements each of the other. Since SVM is basically a binary classifier, it is required to construct and combine several binary SVMs to get the multi-class classifiers. We use two strategies for implementing multi-class SVM classifiers: "one against one" and "one against the rest", and examine their performances on the features used. The efficiency of our method is tested by the CENPARMI handwritten numeral database, and the recognition rate of 98.45% is achieved.

최근의 인식 시스템 연구들에 의하면 SVM 분류기가 여러 다른 분류기에 비해 우수한 인식 성능을 나타내고 있다. 이에 본 논문에서는 SVM 분류기를 사용하여 필기체 숫자를 인식하는 알고리즘을 제시한다. 본 기법에서는 필기체 숫자의 특징으로서 망특징과 Kirsch 연산자에 의한 방향 특징 및 오목특징을 사용하는데, 이중에서 처음 두 특징은 숫자를 이루는 선에 대한 전경 정보를 표현하며, 마지막 특징은 숫자의 배경 정보를 표현하여 상호 보완적인 역학을 수행한다. 본질적으로 SVM은 두 클래스 분류기이므로 이를 다중 클래스 분류기로 사용하기 위해서는 여러 개의 SVM들을 결합하여 사용해야 하는데, 본 논문에서는 "일대일" 방법과 "일대다" 방법을 사용하여 주어진 특징에 대한 인식을 수행하였다. 제시된 기법의 성능 평가를 위해 CENPARMI 필기체 숫자 데이터베이스를 사용하여 실험하였으며, 그 결과 98.45%의 인식률을 얻을 수 있었다.

Keywords