평균전력과 첨두전력 제한이 있는 폐루프 송신 안테나 다이버스티 시스템에서의 최적 안테나 가중치 방식 연구

On the Optimal Antenna Weighting Method for Closed-Loop Transmit Antenna Diversity with Average and Peak Power Constraints

  • 이예훈 (서울산업대학교, 전자정보공학과)
  • 발행 : 2007.07.31

초록

본 논문에서는 레일리 페이딩 채널환경에서 폐루프 송신 안테나 다이버시티 시스템을 위한 최적의 안테나 가중치 방식을 연구한다. 평균전력 및 첨두 전력의 제한이 있는 경우에 폐루프 송신 안테나 다이버시티의 평균 비트 오류율을 최소화하는 최적의 송신 안테나 가중치를 닫힌 형식의 수학식으로 유도한다. 본 논문의 결과로부터 첨두 전력의 제한으로 인한 평균 비트 오류율 성능의 열화는 사용가능 한 평균전력이 커질수록 그리고/또는 송신 안테나 개수가 증가할수록 그 성능 열화의 정도가 더욱 커짐을 알 수 있다.

We consider an optimal antenna weighting scheme for a closed-loop transmit antenna diversity system in Rayleigh fading channels. We derive a closed-form expression for the optimal transmitter weights that minimize the average bit error rate (BER) subject to fixed average and peak transmit power constraints. It is shown that the peak power limitation degrades the average BER performance more significantly as the available average power and/or the number of transmit antennas increase.

키워드

참고문헌

  1. R. T. Derryberry, S. D. Gray, D. M. Ionescu, G. Mandyam, and B. Raghothaman, 'Transmit diversity in 3G CDMA systems,' IEEE Commun. Mag., pp. 68-75, Apr. 2002
  2. T. Lo, 'Maximum ratio transmission,' IEEE Trans. Commun., vol. 47, pp. 1458-1461, Oct. 1999 https://doi.org/10.1109/26.795811
  3. J. K. Cavers, 'Single-user and multiuser adaptive maximal ratio transmission for Rayleigh channels,' IEEE Trans. Veh. Technol., vol. 49, pp. 2043-2050, Nov. 2000 https://doi.org/10.1109/25.901862
  4. J. Choi, 'Performance analysis for transmit antenna diversity with/without channel information,' IEEE Trans. Veh. Technol., vol. 51, pp. 101-113, Jan. 2002 https://doi.org/10.1109/25.992071
  5. A. F. Naguib, A. Paulraj, and T. Kailath, 'Capacity improvement with base station antenna arrays in cellular CDMA,' IEEE Trans. Veh. Technol., vol. 43, pp. 691-698, Aug. 1994 https://doi.org/10.1109/25.312780
  6. F. Rashid-Farrokhi, L. Tassiulas, and K. Liu, 'Joint optimal power control and beamforming in wireless networks using antenna arrays,' IEEE Trans. Commun., vol. 46, pp. 1313-1324, Oct. 1998 https://doi.org/10.1109/26.725309
  7. F. Rashid-Farrokhi, K. Liu, and L. Tassiulas, 'Transmit beamforming and power control for cellular wireless systems,' IEEE J. Select. Areas Commun., vol. 16, pp. 1437-1450, Oct. 1998 https://doi.org/10.1109/49.730452
  8. M. Schubert and H. Boche, 'An efficient algorithm for optimum joint downlink beamforming and power control,' in Proc. IEEE VTC spring, pp. 1911-1915, May 2002
  9. M. Schubert, D. Karadoulamas, H. Boche, and G. Lehmann, 'Joint downlink beamforming and power control for 3G CDMA,' in Proc. IEEE VTC spring, pp. 331-335, Apr. 2003
  10. A. J. Goldsmith and P. P. Varaiya, 'Capacity of fading channels with channel side information,' IEEE Trans. Inform. Theory, vol. 43, pp. 1986-1992, Nov. 1997 https://doi.org/10.1109/18.641562
  11. A. J. Goldsmith and S. G. Chua, 'Variable-rate variable-power MQAM for fading channels,' IEEE Trans. Commun., vol. 45, pp. 1218-1230, Oct. 1997 https://doi.org/10.1109/26.634685
  12. R. Knopp and G. Caire, 'Power control and beamforming for systems with multiple transmit and receive antennas,' IEEE Trans. Wireless Commun., vol. 1, pp. 638-648, Oct. 2002 https://doi.org/10.1109/TWC.2002.804158
  13. S. T. Chung and A. J. Goldsmith, 'Degrees of freedom in adaptive modulation: a unified view,' IEEE Trans. Commun., vol. 49, pp. 1561-1571, Sep. 2001 https://doi.org/10.1109/26.950343
  14. E. N. Onggosanusi, A. Gatherer, A. Dabak, and S. Hosur, 'Performance analysis of closed-loop transmit diversity in the presence of feedback delay,' IEEE Trans. Commun., vol. 49, pp. 1618-1630, Sep. 2001 https://doi.org/10.1109/26.950348
  15. M. Schwartz, W. R. Bennett, and S. Stein, Communication Systems and Techniques. New-York: McGraw-Hill, 1966
  16. J. G. Proakis, Digital Communications. McGraw-Hill, 3rd. ed., 1995
  17. G. S. G. Beveridge and R. S. Schechter, Optimization: Theory and Practice. McGraw-Hill, 1970
  18. Y. H. Lee, Power and rate adaptation in CDMA communications. PhD thesis, Inform. Transmission Lab., Korea Adv. Inst. Science and Technol. (KAIST), Daejeon, Korea, Feb. 2000
  19. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, 'On the Lambert W function,' Adv. Computat. Math., vol. 5, pp. 329-359, 1996 https://doi.org/10.1007/BF02124750
  20. A. Heck, Introduction to Maple. Springer-Verlag, 1993
  21. D. A. Barry, P. J. Cullingan-Hensley, and S. J. Barry, 'Real values of the W-function,' ACM Trans. Math. Software, vol. 21, pp. 161-171, 1995 https://doi.org/10.1145/203082.203084
  22. D. A. Barry, J.-Y. Parlange, L. Li, H. Prommer, C. J. Cunningham, and F. Stagnitti, 'Analytical approximations for real values of the Lambert W-function,' Math. Comput. Simul., vol. 53, pp. 95-103, 2000 https://doi.org/10.1016/S0378-4754(00)00172-5
  23. Y. Kim et al., 'Beyond 3G: vision, requirements, and enabling technologies,' IEEE Commun. Mag., vol. 41, pp. 120-124, Mar. 2003
  24. H. Sampath, S. Talwar, J. Tellado, V. Erceg, and A. Paulraj, 'A fourth generation MIMO-OFDM broadband wireless system: design, performance, and field trial results,' IEEE Commun. Mag., vol. 40, pp. 143-149, Sep. 2002 https://doi.org/10.1109/MCOM.2002.1031841