DOI QR코드

DOI QR Code

Characteristics of the Simulated ENSO in CGCM

대기-해양 접합 모델에서 모사한 ENSO의 특징

  • Moon, Byung-Kwon (Division of Science Education/Institute of Science Education, Chonbuk National University)
  • 문병권 (전북대학교 과학교육학부/과학교육연구소)
  • Published : 2007.06.30

Abstract

This paper explored the characteristics of the interannual sea surface temperature (SST) variability in the equatorial Pacific by analyzing the simulated data from a newly coupled general circulation model (CGCM). The CGCM simulates well the realistic ENSO variability as well as the mean climatologies including SST, seasonal cycle, precipitation, and subsurface structures. It is argued that the zonal gradient of SST in the equatorial Pacific is responsible for the over-energetic SST variability near the equatorial western boundary in the model. This variability could also be related to the strong westward propagation of SST anomalies which resulted from the enhanced the zonal advection feedback. The simple two-strip model supports this by sensitivity tests. Analysis of the relationship between zonal mean thermocline depth and NINO3 SST index suggested that the ENSO variability is controlled by the recharge-discharge oscillator of the model. The lead-lag regression result reveals that heat buildup process in the western equatorial Pacific associated with the increase of the barrier layer thickness (BLT) is a precedent condition for El $Ni\widetilde{n}o$ to develop.

새롭게 개발한 대기-해양 접합모형(CGCM)에서 모사한 열대 태평양 해수면 온도(SST)의 경년 변동성의 특징을 조사하였다. 모형은 SST의 경년변동과 평균분포, 계절변동, 강수량, 그리고 해양 내부 구조를 관측과 유사하게 모사하였다. 모델은 서태평양 경계 부근에서 관측에 비해 큰 SST 경년변동을 보였는데 이 원인으로 적도 태평양의 SST 동서 변화율을 제시하였다. 즉 관측에 비해 강한 SST 경도는 zonal advection feedback을 강화시켜 SST 아노말리의 서진(westward propagation)과 서태평양의 경년 변동성 증가를 가져왔다. 간단한 two-strip 모델을 이용한 민감도 실험 결과는 이를 뒷받침하였다. 동서 평균한 수온약층의 깊이와 NINO3 SST 인덱스의 분석 결과는 모델의 경년 변동이 충전-방전 진동자에 의한 것임을 나타냈다. 그리고 지연 회귀분석 결과를 이용하여 엘니뇨가 발달하기 전에 barrier layer thickness(BLT) 증가에 의한 열 축적 과정이 서태평양에서 먼저 일어난다는 것을 제시하였다.

Keywords

References

  1. AchutaRao, K. and Sperber, K.R., 2002, Simulation of the El Nifio-Southern Oscillation: Results from the coupled model intercomparison project. Climate Dynamics, 19, 191-209 https://doi.org/10.1007/s00382-001-0221-9
  2. An, S.-I. and Jin, F.-R, 2001, Collective role of zonal advective and thermocline feedbacks in ENSO mode. Journal of Climate, 14, 3421-3432 https://doi.org/10.1175/1520-0442(2001)014<3421:CROTAZ>2.0.CO;2
  3. Bonan, GB., 1996, A land surface model for ecological, hydrological, and atmospheric studies: technical description and user's guide. NCAR Technical Note, National Center for Atmospheric Research, Boulder, Colorado, USA, 150 p
  4. Cane, M.A., 1992, Tropical Pacific ENSO models: ENSO as a mode of the coupled system. Climate System Modeling, Trenberth, K.E. Eds., Cambridge University Press, 583-614
  5. Carton, J.A., Chepurin, G, and Cao, X., 2000, A simple ocean data assimilation analysis of the global upper ocean 1950-95. Part I: Methodology, Journal of Physical Oceanography, 30, 294-309 https://doi.org/10.1175/1520-0485(2000)030<0294:ASODAA>2.0.CO;2
  6. Delecluse, P., Davey, M., Kitamura, Y., Philander, S., Suarez, M., and Bengtsson, L., 1998, Coupled general circulation modeling of the tropical Pacific. Journal of Geophysical Research, 103, 14357-14373 https://doi.org/10.1029/97JC02546
  7. Dewitte, B., Cibot, C, Perigaud, C, An, S.I., and Terray L., 2007, Interaction between near-annual and ENSO modes in a CGCM simulation: role of the equatorial background mean state. Journal of Climate, 20, 1035-1052 https://doi.org/10.1175/JCLI4060.1
  8. Fedorov, A. and Philander, S.G, 2000, Is El Nino changing? Science, 288, 1997-2002 https://doi.org/10.1126/science.288.5473.1997
  9. Gu, D. and Philander, S.GH., 1997, Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805-807 https://doi.org/10.1126/science.275.5301.805
  10. Holtslag, A.A.M. and Boville, B.A., 1993, Local versus non-local boundary-layer diffusion in a global climate model. Journal of Climate, 6, 1825-1842 https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2
  11. Jin, F.-F, 1997a, An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. Journal of Atmospheric Science, 54, 811-829 https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
  12. Jin, F.-F, 1997b, An equatorial ocean recharge paradigm for ENSO. Part II: A stripped down coupled model. Journal of Atmospheric Science, 54, 830-846 https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2
  13. Jin, F.-F, Kug, J.-S., An, S.-I., and Kang, I.-S., 2003, A near-annual coupled ocean-atmosphere mode in the equatorial Pacific ocean. Geophysical Research Letters, 30, 1080 https://doi.org/10.1029/2002GL015983
  14. Kang, I.-S., Kug, J.-S., An, S.-I., and Jin, F.-R, 2004, A near-annual Pacific ocean basin mode. Journal of Climate, 17, 2478-2488 https://doi.org/10.1175/1520-0442(2004)017<2478:ANPOBM>2.0.CO;2
  15. Kim, J.-K., 1999, Parameterization of land surface processes in an atmospheric general circulation model. Ph. D. thesis, Seoul National University, Seoul, Korea, 178 p
  16. Kug, J.-S., 2003, ENSO predictability in various coupled models: roles of the Pacific ocean dynamic and the Indian ocean. Ph. D. thesis, Seoul National University, Seoul, Korea, 167 p
  17. Latif, M., Sterl, A., Maier-Reimer, E., and Junge, M.M., 1993, Climate variability in a coupled GCM. Part I: The tropical Pacific. Journal of Climate, 6, 5-21 https://doi.org/10.1175/1520-0442(1993)006<0005:CVIACG>2.0.CO;2
  18. Lee, W.-S., 2000, A Study of ENSO mechanisms using a CGCM. Ph. D. thesis, Yonsei University, Seoul, Korea, 170 p
  19. Lee, Y.-K., Moon, B.-K., Kwon, M., and Jhun, J.-G, 2006, Roles of wind stress variations in the western north Pacific on the decadal change of ENSO. Journal of the Korean Earth Science Society, 27, 687-694
  20. Levitus, S., 1982, Climatological Atlas of the World Ocean. NOAA 173 p
  21. Maes, C, Picaut, J., Belamari, S., 2002, Salinity barrier layer and onset of El Nino in a Pacific coupled model. Geophysical Research Letters, 29, 2206
  22. Maes, C, Picaut, J., Belamari, S., 2005, Importance of the salinity barrier layer for the buildup of El Nino. Journal of Climate, 18, 104-118 https://doi.org/10.1175/JCLI-3214.1
  23. Maes, C, Ando, K., Delcroix, T., Kessler, W.S., McPhaden, M.J., and Roemmich, D., 2006, Observed correlation of surface salinity, temperature and barrier layer at the eastern edge of the western Pacific warm pool. Geophysical Research Letters, 33, L06601 https://doi.org/10.1029/2005GL024772
  24. Mantua, N.J. and Battisti, D.S., 1995, Aperiodic variability in the Zebiak-Cane coupled ocean-atmosphere model: Air-sea interactions in the western equatorial Pacific. Journal of Climate, 8, 2897-2927 https://doi.org/10.1175/1520-0442(1995)008<2897:AVITZC>2.0.CO;2
  25. McPhaden, M.J., 1999, Genesis and evolution of the 1997-98 El Nino. Science, 283, 950-954 https://doi.org/10.1126/science.283.5404.950
  26. Mechoso, C. and Coauthors, 1995, The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Monthly Weather Review, 123, 2825-2838 https://doi.org/10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2
  27. Meehl, GA., Gent, P.R., Arblaster, J.M., Otto-Bliesner, B.L., Brady, E.C., and Craig, A., 2001, Factors that affect the amplitude of El Nino in global coupled climate models. Climate Dynamics, 17, 515-526 https://doi.org/10.1007/PL00007929
  28. Moon, B.-K., 2004, Characteristics of the vertical baro-clinic mode in the equatorial Pacific and its impact on the interannual and decadal variabilities. Ph. D. thesis, Seoul National University, Seoul, Korea, 182 p
  29. Neelin, J.D. and Jin, F.-F., 1993, Modes of interannual tropical ocean-atmosphere interaction-A unified view. Part II: Analytical results in the weak-coupling limit. Journal of Atmospheric Science, 50, 3504-3522 https://doi.org/10.1175/1520-0469(1993)050<3504:MOITOI>2.0.CO;2
  30. Noh, Y. and Kim, H.-J., 1999, Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. Journal of Geophysical Research, 104, 15621-15634 https://doi.org/10.1029/1999JC900068
  31. Noh, Y, Jang, C.-J, Yamagata, T., Chu, PC, and Kim, C-H., 2002, Simulation of more realistic upper-ocean processes from an OGCM with a new ocean mixed layer model. Journal of Physical Oceanography, 32, 1284-1307 https://doi.org/10.1175/1520-0485(2002)032<1284:SOMRUO>2.0.CO;2
  32. Numaguti, A., Takahashi, M., Nakajima, T, and Sumi, A., 1995, Development of an atmospheric general circulation model. Climate System Dynamics and Modeling. Matsuno, T. Eds., Vols. 1-3, University of Tokyo, 1-27
  33. Pacanowski, R.C., 1995, MOM2 documentation, User's guide and reference manual. GFDL Ocean Group Tech, Rep. No.3
  34. Pacanowski, R.C. and Philander, S.GH., 1981, Parameterization of vertical mixing in numerical models of tropical oceans. Journal of Physical Oceanography, 11, 1143-1451
  35. Park, H.-S., 2003, Development of an atmosphere-ocean-sea ice coupled model and ENSO hindcast experiments. Ph. D. thesis, Pusan National University, Pusan, Korea, 109 p
  36. Park, H.-S. and An, J.-B., 2004, Development of a new CGCM and ENSO hindcast Experiment using the CGCM(I). Journal of the Korean Meteorological Society, 40, 135-146
  37. Robertson, A.W., Ma, C.-C, Ghil, M., and Mechoso, C. R., 1995, Simulation of the tropical Pacific climate with a coupled ocean-atmosphere general circulation model. Part II: Interannual variability. Journal of Climate, 8, 1199-1216 https://doi.org/10.1175/1520-0442(1995)008<1199:SOTTPC>2.0.CO;2
  38. Rosati, A. and Miyakoda, K., 1988, A general circulation model for upper ocean simulation. Journal of Physical Oceanography, 18, 1601-1626 https://doi.org/10.1175/1520-0485(1988)018<1601:AGCMFU>2.0.CO;2
  39. Wyrtki, K., 1975, El Nino: the dynamic response of the equatorial Pacific ocean to atmospheric forcing. Journal of Physical Oceanography, 5, 572-584 https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2
  40. Xie, P. and Arkin, P.A., 1997, Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society, 78, 2539-2558 https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
  41. Zebiak, S.E. and Cane, M.A., 1987, A model El Nino-Southern Oscillation. Monthly Weather Review, 115, 2262-2278 https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2

Cited by

  1. Development of Nonlinear Low-Order Climate Model and Simulated ENSO Characteristics vol.36, pp.7, 2015, https://doi.org/10.5467/JKESS.2015.36.7.611