Rhabdomere Formation in Late Pupal Stage of Drosophila melanogaster; Observation Using High-Pressure Freezing and Freeze-Substitution, and High-Voltage Electron Microscopy

초고압 동결장비와 초고압투과전자현미경을 이용한 초파리의 감간분체 형성과정의 구조분석

  • Mun, Ji-Young (Laboratory of Cell Engineering & 3-D Structure, Graduate School of Life Sciences and Biotechnology, Korea University) ;
  • Arii, Tatsuo (Section of Brain Structure, Center for Brain Experiment, National Institute for Physiological Sciences, Okazaki National Research Institutes) ;
  • Hama, Kiyoshi (Section of Brain Structure, Center for Brain Experiment, National Institute for Physiological Sciences, Okazaki National Research Institutes) ;
  • Han, Sung-Sik (Laboratory of Cell Engineering & 3-D Structure, Graduate School of Life Sciences and Biotechnology, Korea University)
  • 문지영 (고러대학교 생명과학대학 생명공학원 세포공학 및 생체3차구조 연구실) ;
  • ;
  • ;
  • 한성식 (고러대학교 생명과학대학 생명공학원 세포공학 및 생체3차구조 연구실)
  • Published : 2007.03.30

Abstract

The late pupal stage of Drosophila melanogaster occurs immediately before the completion of retinal development, during which the rhabdomere rapidly forms. In this period, the photoreceptor cells were fixed and dehydrated using a high-pressure freezer (HPF) and freeze substitution (FS) technique, which is the most effective in preserving the cell structures, and observed using high-voltage electron microscopy (HVEM) at 1000 KV. The rhabdomere was classified structurally into three types of formation patterns using stereo-tiling image of thick sections. Initially, hexagonal arrays of rhabdomere existed in different angles. In addition, small pieces of rhabdomere could be observed in the cytoplasm of the photoreceptor rolls, which were visible during the profess of rhabdomere formation. In addition, multiple layers of rhabdomere strings were observed. We observed there are at least three types of vesicles related to rhabdomere formation in photoreceptor cells. In addition, it was found that these vesicles initiate the formation of the rhabdomeres during the pupal stage. Collectively, these data suggest that rhabdomeres were mainly formed through vesicles, and that parts of the rhabdomere formed first and then gathered and formed rhabdomeres in the late pupal stage.

감간분체 (Rhabdomere)가 왕성하게 형성되는 번데기시기의 Drosophila melanogaster 광수용체 세포를 고정효과가 가장 좋은 high-pressure freezing (HPF)와 freeze-substitution (FS) 기법으로 고정한 후, 초고압 전자현미경을 통하여 1000 KV 전압에서 관찰하였다. 후박절편(250nm)의 tilting image를 통하여 광수용체 세포에서 감간분체 형성의 세가지 형태가 관찰되었다. 첫째로, 감간분체의 육방정계 배열이 (hexagonal may) 서로 다른 각도로 존재하고 있음을 관찰할 수 있었다. 둘째, 광수용체 세포의 세포질 안에서 감간분체 형성의 중간 과정으로 보여지는 작은 조각의 감간분체를 관찰할 수 있었다. 셋째, 감각분체가 여러 개의 층으로 형성되어 있음을 관찰할 수 있었다. 또 광수용체 세포의 세포질에는 최소한 세 가지의 소낭(vesicle)이 존재하였고, 이들 소낭들은 번데기 시기의 감각분체 형성을 주도하는 것으로 확인되었다. 이 결과들에 의하여 소낭이 감각분체 형성과 감각분체의 부분들이 모여서 감각분체를 완성되는 과정에 관여함을 추정할 수 있었다.

Keywords

References

  1. Alone DP, Tiwari AK, Mandal L, Li M, Mechler BM, Roy JK: Rab11 is required during Drosophila eye development. Int J Dev Biol 49 : 873-879, 2005 https://doi.org/10.1387/ijdb.051986da
  2. Arikawa K, Hicks JL, Williams DS: Identification of actin filaments in the rhabdomeral microvilli of Drosophila photoreceptors. J cell biol 110 : 1993-1998, 1990 https://doi.org/10.1083/jcb.110.6.1993
  3. Baumann O: Biogenesis of surface domains in fly photoreceptor cells: fine-structural analysis of the plasma membrane and immunolocalization of Na+, K+ ATPase and alpha-spectrin during cell differentiation. J Comp Neurol 382 : 429-42, 1997 https://doi.org/10.1002/(SICI)1096-9861(19970616)382:4<429::AID-CNE1>3.0.CO;2-4
  4. Biswas SK, Yamaguchi M, Naoe N, Takashima T, Takeo K: Quantitative three-dimensional structural analysis of Exophiala dermatitidis yeast cells by freeze-substitution and serial ultrathin sectioning. J Electron Microsc (Tokyo) 52 : 133-143, 2003 https://doi.org/10.1093/jmicro/52.2.133
  5. Cagan RL, Ready DF: The emergence of order in the Drosophila pupal retina. Dev Biol 136 : 346-362, 1989 https://doi.org/10.1016/0012-1606(89)90261-3
  6. Chang HY, Ready DF: Rescue of photoreceptor degeneration in rhodopsin-null Drosophila mutants by activated Rac1. Science 290 : 1978-1980, 2000 https://doi.org/10.1126/science.290.5498.1978
  7. Colley NJ, Cassill JA, Baker EK, Zuker CS: Defective intra-cellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration. PNAS 92 : 3070-3074, 1995 https://doi.org/10.1073/pnas.92.7.3070
  8. Hama K, Arii T, Kosaka T: Three-dimensional morphometrical study of dendritic spines of the granule cell in the rat dentate gyrus with HVEM stereo images. J Electron Microsc Tech 12 : 80-87, 1989 https://doi.org/10.1002/jemt.1060120203
  9. Hardie RC, Raghu P: Visual transduction in Drosophila. Nature 413 : 186-193, 2001 https://doi.org/10.1038/35093002
  10. Kumar JP, Ready DF: Rhodopsin plays an essential structural role in Drosophila photoreceptor development. Development 121 : 4359-4370, 1995
  11. Lee R: A critical appraisal of the effects of fixation, dehydration and embedding on cell volume. SEM inc, Chicago, 1984
  12. Longley RLJ, Ready DF: Integrins and the development of three-dimensional structure in the Drosophila compound eye. Dev Biol 171 : 415-433, 1995 https://doi.org/10.1006/dbio.1995.1292
  13. McEwen BF, Marko M, Hsieh CE, Mannella C: Use of frozen-hydrated axonemes to assess imaging parameters and resolution limits in cryoelectron tomography. J Struct Biol 138 : 47-57, 2002 https://doi.org/10.1016/S1047-8477(02)00020-5
  14. Monaghan P, Perusinghe N, Muller M: High-pressure freezing for immunocytochemistry. J Micros 192(3) : 248-258, 1998 https://doi.org/10.1046/j.1365-2818.1998.00387.x
  15. Muller-Reichert T, Hohenberg H, O'Toole ET, McDonald K: Cryoimmobilization and three-dimensional visualization of C. elegans ultrastructure. J Microsc 212 : 71-80, 2003 https://doi.org/10.1046/j.1365-2818.2003.01250.x
  16. Perry MM: Further studies on the development of the eye of Drosophila melanogaster. I. The ommatidia. J Morphol 124 : 227-248, 1968 https://doi.org/10.1002/jmor.1051240208
  17. Sang TK, Ready DF: Eyes closed, a Drosophila p47 homolog, is essential for photoreceptor morphogenesis. Development 129 : 143-154, 2002
  18. Sapp RJ, Christianson J, Stark WS: Turnover of membrane and opsin in visual receptors of normal and mutant Drosophila. J Neurocytol 20 : 597-608, 1991 https://doi.org/10.1007/BF01215267
  19. Satoh AK, O'Tousa JE, Ozaki K, Ready DF: Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors. Development 132 : 1487-1497, 2005 https://doi.org/10.1242/dev.01704
  20. Schinz RH, Lo MV, Larrivee DC, Pak WL: Freeze-fracture study of the Drosophila photoreceptor membrane: mutations affecting membrane particle density. J cell biol 93 : 961-967, 1982 https://doi.org/10.1083/jcb.93.3.961
  21. Stark WS, Sapp R, Schilly D: Rhabdomere turnover and rhodopsin cycle: maintenance of retinula cells in Drosophila melanogaster. J Neurocytol 17 : 499-509, 1988 https://doi.org/10.1007/BF01189805
  22. Studer D, Michel M, Muller M: High pressure freezing comes of age. Scanning Microsc Supplement 3 : 253-268, 1989
  23. Tomlinson A: Cellular interactions in the developing Drosophila eye. Development 104 : 183-193, 1988
  24. Williams DS: Ommatidial structure in relation to turnover of photoreceptor membrane in the locust. Cell Tissue Res 225 : 595-617, 1982
  25. Wolff T, Ready DF: The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, New York, pp. 1277-1325, 1993
  26. Zelhof AC, Hardy RW: WASp is required for the correct temporal morphogenesis of rhabdomere microvilli. J Cell Biol 16 : 417-426, 2004
  27. Zuker CS: The biology of vision of Drosophila. PNAS 93 : 571-576, 1996 https://doi.org/10.1073/pnas.93.2.571