Phylogenetic Diversity of Bacteria in an Earth-Cave in Guizhou Province, Southwest of China

  • Zhou, Jun-Pei (Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University) ;
  • Gu, Ying-Qi (Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University) ;
  • Zou, Chang-Song (Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University) ;
  • Mo, Ming-He (Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University)
  • 발행 : 2007.04.30

초록

The objective of this study was to analyze the phylogenetic composition of bacterial community in the soil of an earth-cave (Niu Cave) using a culture-independent molecular approach. 16S rRNA genes were amplified directly from soil DNA with universally conserved and Bacteria-specific rRNA gene primers and cloned. The clone library was screened by restriction fragment length polymorphism (RFLP), and representative rRNA gene sequences were determined. A total of 115 bacterial sequence types were found in 190 analyzed clones. Phylogenetic sequence analyses revealed novel 16S rRNA gene sequence types and a high diversity of putative bacterial community. Members of these bacteria included Proteobacteria (42.6%), Acidobacteria (18.6%), Planctomycetes (9.0 %), Chloroflexi (Green nonsulfur bacteria, 7.5%), Bacteroidetes (2.1%), Gemmatimonadetes (2.7%), Nitrospirae (8.0%), Actinobacteria (High G+C Gram-positive bacteria, 6.4%) and candidate divisions (including the OP3, GN08, and SBR1093, 3.2%). Thirty-five clones were affiliated with bacteria that were related to nitrogen, sulfur, iron or manganese cycles. The comparison of the present data with the data obtained previously from caves based on 16S rRNA gene analysis revealed similarities in the bacterial community components, especially in the high abundance of Proteobacteria and Acidobacteria. Furthermore, this study provided the novel evidence for presence of Gemmatimonadetes, Nitrosomonadales, Oceanospirillales, and Rubrobacterales in a karstic hypogean environment.

키워드

참고문헌

  1. Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Amann, R.I., W. Ludwig, and K.H. Schleifer. 1995. Phylogenetic identification, and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169
  3. Asami, H., M. Aida, and K. Watanabe. 2005. Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture. Appl. Environ. Microbiol. 716, 2925-2933
  4. Bottomley, P.J. 1992. Ecology of Bradyrhizobium, and Gluconoacetobacter diazotrophicusobium, p. 293-348. In G. Stacey, R.H. Burris and H.J. Evans (eds.), Biological Nitrogen Fixation. Chapman, and Hall New York, London, UK
  5. Burrell, P.C., J. Keller, and L.L. Blackall. 1998. Microbiology of a nitrite-oxidizing bioreactor. Appl. Environ. Microbiol. 64, 1878- 1883
  6. Canaveras, J.C., S. Sanchez-Moral, V. Soler, and C. Saiz-Jimenez. 2001. Microorganisms, and microbially induced fabrics in cave walls. Geomicrobiol. J. 18, 223-240 https://doi.org/10.1080/01490450152467769
  7. Chen, W.M., S. Laevens, T.M. Lee, T. Coenye, P. De Vos, M. Mergeay, and P. Vandamme. 2001. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species, and sputum of a cystic fibrosis patient. Int. J. Syst. Evol. Microbiol. 51, 1729-1735 https://doi.org/10.1099/00207713-51-5-1729
  8. Cramm, R., R.A. Siddiqui, and B. Friedrich. 1997. Two isofunctional nitric oxide reductases in Alcaligenes eutrophus H16. J. Bacteriol. 179, 6769-6777 https://doi.org/10.1128/jb.179.21.6769-6777.1997
  9. Cunningham, K.I., D.E. Northup, R.M. Pollastro, W.G. Wright, and E.J. LaRock. 1995. Bacteria, fungi, and biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environ. Geol. 25, 2-8 https://doi.org/10.1007/BF01061824
  10. Engel, A.S., M.I. Porter, B.K. Kinkle, and T.C. Kane. 2001. Ecological assessment, and geological significance of microbial communities from Cesspool Cave, Virginia. Geomicrobiol. J. 18, 259-274 https://doi.org/10.1080/01490450152467787
  11. Engel, A.S., M.L. Porter, L.A. Stern, S. Quinlan, and P.C. Bennett. 2004. Bacterial diversity, and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic 'Epsilonproteobacteria'. FEMS Microbiol.Ecol. 51, 31-53, https://doi.org/10.1016/j.femsec.2004.07.004
  12. Ghiorse, W.C. and P. Hirsch. 1979. An ultrastructural study of iron, and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteria. Arch. Microbiol. 123, 213-226 https://doi.org/10.1007/BF00406653
  13. Gillieson, D. 1996. Caves, processes, development, and management, p. 324. Blackwell Publishers, Oxford, UK
  14. Glockner, F.O., M. Kube, M. Bauer, H. Teeling, T. Lombardot, W. Ludwig, D. Gade, A. Beck, K. Borzym, K. Heitmann, R. Rabus, H. Schlesner, R. Amann, and R. Reinhardt. 2003. Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. PNAS 14, 8298-8303
  15. Gonzalez, I., L. Laiz, B. Hermosin, B. Guerrero, C. Incerti, and C. Saiz-Jimenez. 2003. Microbial communities of the rock paintings of Atlanterra shelter South Spain. J. Microbiol. Methods 36, 123-127 https://doi.org/10.1016/S0167-7012(99)00017-2
  16. Groth, I. and C. Saiz-Jimenez. 1999. Actinomycetes in hypogean environments. Geomicrobiol. J. 16, 1-8 https://doi.org/10.1080/014904599270703
  17. Groth, I., R.B. Vetterman, Schuetzte, P. Schumann, and C. Saiz- Jimenez. 1999. Actinomycetes in karstic caves of northern Spain Altamira, and Tito Bustillo. J. Microbiol. Methods 36, 115-122 https://doi.org/10.1016/S0167-7012(99)00016-0
  18. Groth, I., P. Schumann, L. Laiz, S. Sanchez-Moral, J.C. Canaveras, and C. Saiz-Jimenez. 2001. Geomicrobiological study of the Grotta dei Cervi, Porto Badisco, Italy. Geomicrobiol. J. 18, 241-258 https://doi.org/10.1080/01490450152467778
  19. Head, I.M., J.R. Saunders, and R.W. Pickup. 1998. Microbial evolution, diversity, and ecology, a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol. 35, 1-21 https://doi.org/10.1007/s002489900056
  20. Hiorns, W.D., R.C. Hastings, I.M. Head, G.R. Hall, A.J. Mc- Carthy, J.R. Saunders, and R.W. Pickup. 1995. Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of Nitrosospiras in the environment. Microbiology 141, 2793-2800 https://doi.org/10.1099/13500872-141-11-2793
  21. Holmes, A.J., N.A. Tujula, M. Holley, A. Contos, J.M. James, P. Rogers, and M.R. Gillings. 2001. Phylogenetic structure of unusual aquatic microbial formations in Nullarbor Caves, Australia. Environ. Microbiol. 3, 256-264n https://doi.org/10.1046/j.1462-2920.2001.00187.x
  22. Hose L.D., A.N. Palmer, M.V. Palmer, D.E. Northup, P.J. Boston, and H.R. Duchene. 2000. Microbiology, and geochemistry in a hydrogen-sulphide-rich karst environment. Chem. Geol. 169, 399-423 https://doi.org/10.1016/S0009-2541(00)00217-5
  23. Huang, L.N., H. Zhou, S. Zhu, and L.H. Qu. 2004. Phylogenetic. diversity of bacteria in the leachate of a full-scale recirculating landfill. FEMS Microbiol. Ecol. 50, 175-183 https://doi.org/10.1016/j.femsec.2004.06.008
  24. Hugenholtz, P., M.B. Goebel, and N.R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765-4774
  25. Jetten, M., M. Wagner, J. Fuerst, M. van Loosdrecht, G. Kuenen, and M. Strous. 2001. Microbiology, and application of the anaerobic ammonium oxidation 'anamox' process. Curr. Opin. Biotechnol. 12, 283-288 https://doi.org/10.1016/S0958-1669(00)00211-1
  26. Juretschko, S., A. Loy, A. Lehner, and M. Wagner. 2002. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25, 84-99 https://doi.org/10.1078/0723-2020-00093
  27. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120 https://doi.org/10.1007/BF01731581
  28. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3, Integrated software for molecular evolutionary genetics analysis, and sequence alignment. Briefings in Bioinformatics 5, 150-163 https://doi.org/10.1093/bib/5.2.150
  29. Kuske, C.R., S.M. Barns, and J.D. Busch. 1997. Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl. Environ. Microbiol. 63, 3614-3621
  30. Laiz, L., I. Groth, I. Gonzalez, and C. Saiz-Jimenez. 1999. Microbiological study of the dripping water in Altamira Cave Santillana del Mar, Spain. J. Microbiol. Methods 36, 129-138 https://doi.org/10.1016/S0167-7012(99)00018-4
  31. Laiz, L., I. Groth, P. Schumann, F. Zezza, A. Felske, B. Hermosin, and C. Saiz-Jimenez. 2000. Microbiology of the stalactites from Grotta dei Cervi, Porto Badisco, Italy. Int. Microbiol. 3, 25-30
  32. Lane, D.J. 1991. 16S/23S rRNA sequencing, p. 115-175. In E. Stackebrandt, and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial. Wiley, New York, USA
  33. Liesack, W. and K. Finster. 1994. Phylogenetic analysis of five strains of Gram-negative, obligately anaerobic, sulfur-reducing bacteria, and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int. J. Syst. Bacteriol. 44, 753-758 https://doi.org/10.1099/00207713-44-4-753
  34. Liesack, W., P.H. Janssen, F.A. Rainey, N. Ward-Rainey, and E. Stackebrandt. 1997. Microbial diversity in soil, the need for a combined approach using molecular, and cultivation techniques, p. 375-439. In J.D. van Elsas, J.T. Trevors, and E.M.H. Wellington (eds.), Modern Soil Microbiology. Marcel Dekker, New York, USA
  35. Ludwig, W., S.H. Bauer, M. Bauer, I. Held, I. Kirchhof, R. Schulze, and K.H. Schleifer. 1997. Detection, and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol. Lett. 153, 181-190 https://doi.org/10.1111/j.1574-6968.1997.tb10480.x
  36. Maidak, B.L., G.J. Olsen, N. Larsen, R. Overbeek, M.J. Mc- Caughey, and C.R. Woese. 1997. The RDP ribosomal database project. Nucleic Acids Res. 25, 109-110 https://doi.org/10.1093/nar/25.1.109
  37. Moore, G.W. 1981. Manganese deposition in limestone caves, p. 642-645. In B.F. Beck (eds.), Proceedings 8th International Congress of Speleology, II. Kentucky, USA
  38. Nealson, K.H. and D. Saffarini. 1994. Iron, and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Ann. Rev. Microbiol. 48, 311-343 https://doi.org/10.1146/annurev.mi.48.100194.001523
  39. Neef, A., R. Amann, H. Schlesner, and K.H. Schleifer. 1998. Monitoring a widespread bacterial group, in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology 144, 3257-3266 https://doi.org/10.1099/00221287-144-12-3257
  40. Northup, D.E., C.N. Dahm, L.A. Melim, M.N. Spilde, L.J. Crossey, and K.H. Lavoie. 2000. Evidence for geomicrobiological interactions in Guadalupe Caves. J. Caves Kars.t Stud. 62, 80-90
  41. Northup, D.E. and K.H. Lavoie. 2001. Geomicrobiology of caves, a review. Geomicrobiol. J. 18, 199-222 https://doi.org/10.1080/01490450152467750
  42. Northup, D.E., S.M. Barns, L.E. Yu, M.N. Spilde, R.T. Schelble, and K.E. Dano. 2003. Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environ. Microbiol. 5, 1071-1086 https://doi.org/10.1046/j.1462-2920.2003.00500.x
  43. Ozeki, S., I. Baba, N. Takaya, and H. Shoun. 2001. A novel C1- using denitrifier Alcaligenes sp. STC1, and its genes for coppercontaining nitrite reductase, and azurin. Biosci. Biotechnol. Biochem. 65, 1206-12101 https://doi.org/10.1271/bbb.65.1206
  44. Peck, S.B. 1986. Bacterial deposition of iron, and manganese oxides in North American caves. NSS. Bull 48, 26-30
  45. Quaiser, A., T. Ochsenreiter, C. Lanz, S. C. Schuster, A. H. Treusch, J. Eck, and C. Schleper. 2003. Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol. Microbiol. 50, 563-575 https://doi.org/10.1046/j.1365-2958.2003.03707.x
  46. Saitou, N., M. Nei, and L.S. Lerman. 1987. The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  47. Sarbu S.M., T.C. Kane, and B.K. Kinkle. 1996. A chemoautotrophically based cave ecosystem. Science 272, 1953-1954 https://doi.org/10.1126/science.272.5270.1953
  48. Schabereiter-Gurtner, C., C. Saiz-Jimenez, G. Pinar, W. Lubitz, and S. Rolleke. 2002a. Altamira Cave Paleolithic paintings harbour partly unknown bacterial communities. FEMS Microbiol. Lett. 211, 7-11 https://doi.org/10.1111/j.1574-6968.2002.tb11195.x
  49. Schabereiter-Gurtner, C., C. Saiz-Jimenez, G. Pin.ar, W. Lubitz, and S. Rolleke. 2002b. Phylogenetic 16S rRNA analysis reveals the presence of complex, and partly unknown bacterial communities in Tito Bustillo Cave, Spain, and on its Paleolithic paintings. Environ. Microbiol. 4, 392-400 https://doi.org/10.1046/j.1462-2920.2002.00303.x
  50. Schabereiter-Gurtner, C., C. Saiz-Jimenez, G. Pinar, W. Lubitz, and S. Rolleke. 2003. Phylogenetic diversity of bacteria associated with Paleolithic paintings, and surrounding rock walls in two Spanish caves Llonin, and La Garma. FEMS Microbiol. Ecol. 1606, 1-13
  51. Schirmer, A., R. Gadkari, C.D. Reeves, F. Ibrahim, E.F. DeLong, and C.R. Hutchinson. 2005. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl. Environ. Microbiol. 71, 4840-4849 https://doi.org/10.1128/AEM.71.8.4840-4849.2005
  52. Schmid, M., U. Twachtmann, M. Klein, M. Strous, S. Juretschko, and M. Jetten. 2000. Molecular evidence for a genus-level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. System. Appl. Microbiol. 23, 93-106 https://doi.org/10.1016/S0723-2020(00)80050-8
  53. Smart, P.L, A.C. Waltham, M.D. Yang, and Y.J. Zhang. 1986. Karst geomorphology of western Guizhou, China. Cave Science 13, 89-104
  54. Suzuki, I., U. Dular, and S.C. Kwok. 1974. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas cells, and extracts. J. Bacteriol. 120, 556-558
  55. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgens. 1997. The Clustal X windows interface, flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-4882
  56. Vlasceanu, L., S.M. Sarbu, A.S. Engel, and B.K. Kinkle. 2000. Acidic cave-wall biofilms located in the Frasassi Gorge, Italy. Geomicrobiol. J. 17, 125-140 https://doi.org/10.1080/01490450050023809
  57. Zhang Y.J., M.D. Yang, and C.H. He. 1992. Karst geomorphology, and environmental implication in Guizhou. Cave Science 19, 13-20