References
- 김만선, 이상용; '신경망을 이용한 대용량 데이터 처리를 위한 군집화 방법', 공주대학교 생산기술연구소 논문집, 10, 2002
- 이현우, 남호수, 강중철, 'A Study on Data Mining Application Problem in the TIFT-LCD Industry', 한국데이터정보과학회지, 16(4) : 91-101, 2005
- 이기훈; '데이터 마이닝에서 로버스트 통계적 기법의 도입', 산경논총, 18, 2000
- Besharati, B., Luo, L., and Azarm, S.; 'Multi-Objective Single Product Robust Optimization: An Integrated Design and Marketing Approach,' Journal of Mechanical Design, 128(4) : 884-892, 2006 https://doi.org/10.1115/1.2202889
- Chang X. F. and Xian F. W.; 'Data mining techniques applied to predictive modeling of the knurling process,' IIE Transactions, 36 : 253-263, 2004 https://doi.org/10.1080/07408170490274214
- Cho D. H., Ahn B. S., and Kim S. H.; 'Prioritization of association rules in data mining: Multiple criteria decision approach,' Expert Syst. Appl., 29(4) : 867-878, 2005 https://doi.org/10.1016/j.eswa.2005.06.006
- Cho, B. R.; 'Optimization Issues in Quality Engineering,' Ph.D. Dissertation, School of Industrial Engineering, University of Oklahoma, 1994
- DuMonuchel, W.; 'Bayesian Data Mining in Large Frequency Tables With an Application to the Spontaneous Reportign System,' The American Statistician, 53 : 177-202, 1999 https://doi.org/10.2307/2686093
- Gardner, M. and Bieker, J.; 'Data Mining Solves Though Semiconductor Manufacturing Problem. Conference on Knowledge Discovery,' in Data Proceedings of the sixth ACMSIGKDD international conference on Know ledge discovery and data mining, New York, pp. 376-383, 2000
- Hall, M. A.; 'Correlation-based Feature Selection for Machine Learning,' Waikato University, Department of Computer Science. Hamilton, New Zealand, 1998
- John, G. H., Kohavi, R., and Pflager, P.; 'Irrelevant Features and the Subset Selection Problem,' In Machine Learning: Proceedings of the Eleventh International Conference, Morgan Kaufmann, 1994
- Lin, D. K. J. and Tu, W.; 'Dual response surface optimation,' Journal of Quality Technology, 27 : 34-39, 1995 https://doi.org/10.1080/00224065.1995.11979556
- Montgomery D. C.; Introduction to Statistical Quality Control, 4th edn. John Wiley & Sons, New York, :1001
- Pignatiello, J. J. and Ramberg, J. S.; 'Discussion of off-line quality control, parameter design and Taguchi method,' Journal of Quality Technology, 17(4) : 151-161, 1985
- Seifert, J. W., Data Mining: An Overview, CRS Report RL31798, 2004
- Shin, S. M. and Cho, B. R., 'Bias-specified robust design optimization and its analytical solutions,' Computer & Industrial Engineering, 48 : 129-140, 2005 https://doi.org/10.1016/j.cie.2004.07.011
- Fayyad, U., piatetsky-Shapiro, G., and Smyth, P.; 'The KDD Process for Extracting Useful Know ledge from Volumes of Data,' Communication of the ACM, 39(11) : 27-34, 1996
- Vining, G. G. and Myers, R. H.; 'Combining Taguchi and response surface Philosophies: A dual response approach,' Journal of Quality Technology, 22 : 38-45, 1990 https://doi.org/10.1080/00224065.1990.11979204
- Witten, I. W. H. and Frank, E.; Data Mining: Practical Machines Learning Tools and Techniques, 2nd edn Morgan Kaufmann, San Francisco, 2005
- Yu, L. and Liu, H.; 'Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution,' The Proceedings of the 20th International Conference on Machine Learning (ICML-03). Washington D. C., pp. 856-863, 2003