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1. Introduction

The purpose of this paper is to derive some results of convex
underestimates of sums of products of linear functions that are
useful in certain applications. This paper demonstrates exten-
sions of Al-Khayyal and Falk [1], and Sherali and Alameddine
[3]. Later Al-Khayyal and Hwang [2] applied this linearization
technique to solve network vehicle routing problem efficiently.
We show that a particular type of non-linear mixed-integer pro-
gram can be reformulated into an equivalent mixed-integer linear
program under certain conditions, thereby making problem solv-

ing relatively easy. Also it compares two alternative relaxation
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methods and shows one is better than the other in the sense
of tighter relaxation.

2. Simplification and Extensions

In this section we will discuss the linearization of the feasible
region defined by a special nonlinear equation formed by the
product of variables. We will preliminarily start to investigate
the linearization technique for the nonlinear form of product
of two variables, that is to show whenever the form of xy
appears in an optimization problem - whether it is in the ob-
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jective function or in constraints - we can apply the lineariza-
tion technique introduced hereinafter. Later we extend this tech-

nique to the form of %

2.1 Relaxation of Product of Two Variables

Consider compact set B defined by z,y €R.
B:={(z,y)|L, <z < U,L,<y< U;/}
It is formed by four constraints of

)ae—L, =0
iy y—L,>0

i) U,—2z>0
W) U,—y=0.

By expending four ways of multiplying i) to iii), i) to iv),
i) to iii), and ii) to iv), we obtain the set C; constructed by

which are called implied constraints

Cr:=A{(z,y):ay= Le+L,y—L,L,
zy =z U+ Uy— U, U,
zy< Uax+L,y-L,U,
zy< L+ Uzy—UzLy}.
Since,

z—L, =0, y—L, >0
=(~L)y~L,) =0
=ay=LzxtLl,y—L.L,

U~-z20, U,~y=0
=(U,~2)(U,~y) > 0
=zy=zUz+Uy-U U,

z—L, 20, U~y=20
= (- L,)(U,~y) 2 0
=szy<Uz+Lly—L, U,

y—L,20, -z =0
=(y—L)(U,-z) 20
=zy<Lz+U,y-UL,

Notice that B< C,.

Now for notational simplicity, let’s introduce a notation that
L, U :={(z,y) L, <2< U, L,<y< U},

where L:={%}, U:=[gz].

Y Y

Then B:= {(x,iy) (z,y) €L, Ul}.

Now consider the set B’ in higher dimensional space
B :={(z,y,2) (z,y) €L, U], (z,y) ECp, z=wy}.

Then, set B’ has constraints as follows
z=zy,

L <xz<U,

L,=y=< U,
z = Lyw-i-Lzy—LzLy,
22 Uz+Uy—U, U,
z<Ugz+Lly—L, L,
z<LatUy—UL,

Notice that the projection B’ onto z—y plane is exactly
B itself.
Now let the projection of B’ onto z—y plane as

Proj..B' :={(z,y): (z,y,2) €EB’ forall z}.
R

Then, it is clear that B < ProjR2B' which means that for
all (z,y) €B, there exists z such that (z,y, z)EB’.

Notice that B < {(z, y, 2)1(z, y) € C, z=zy} so B’
has constraints defining C, which are obtained by substituting

z=zy, that is

zZma.X{LyrE-FLzy—LILy, Uz+ Ugcy_Uny}’ ..... (1)
z < min{Uz+L,y—L, U, Lx+ Uy— UL}~ (2)

Then, equation(l) and (2) represent convex and concave en-
velope of xy over (L, U] respectively. So, whenever zy ap-
pears in a problem with bounded information for each variable,
we can linearize xy by introducing the new variable z=zy
and adding constraints C; with z=zvy.

As an example, consider feasible region S with [Z, U]=

. . 1
[0, e], where e =(1,1)7, and the additional constraint zy < 5

then we can express S’ as

z > max {0, :c-i—y—l}, 2z < min{z,y},

1 0<zx<1

<y<
=5 , 0=y<1,

Now <Figure 1> shows the feasible region S and 5'. Set
S is two dimensional space in the z—y plane. Set .S’ is in
3-dimensional space of (x, y, z). As shown in the <Figure 1>,
for every point (z,y) €5, there exists z such that
(z,y, z) €8’. The projection of .§" onto the z—y plane is
shown in <Figure 2>. It illustrates why the feasible region .5
is a subset of the convex set Proj..B".
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<Figure 1> Example of nonlinear feasible region and its
convex relaxation
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<Figure 2> Original nonlinear feasible region and
projected region

2.2 Extension to the form of %

Consider feasible regions £ generated by x,yeR for
0 <L, = U, and suppose there exist additional constraints with

the term % Then, the hyperrectangle
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So we can apply same result of (1) and (2) as follows
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L,sz=<U, L, <y=<U,

L, L U, U,
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L, L U, U

P x——$,2§1+ L=

Loy L U v 4

. 1 o
By letting el we can rewrite it as

yw=1, L <z< U, L, <y=<U,
ZZL-I—wa—

-~ T
7> —
Ly

x x
—_—, +U w~——,
U’y z

w

Then, substituting z” =wy and applying same methods with

1 1
e, =—
bounds on w [Uy,Ly],we get

z'=1L,<z<U, L,<y<U,

L U
T T x T
> — _ > —+ _
z = Uy+wa 7, z I, Uw I,
L U
T T T T
<XiL w2 i<t U w—
St A /A A A
L U
’ Y y ’ Y ]
z 2L wtT——-, 2 20U wt+-—>———,
Y Ly % v Ly Y
2 < U;/w+%y—1, 2 < Lwt——
Substituting 2" =1 gives
L <z=U, L, =y=U,
L U
T T x x
> = - e -
z= Uy+sz % z= Ly-!—Uzw I,
L U
xr £ T T
< T L w2 < S Uw—
S 7t e P A T
L U
Yy y Y y
1> Lwt2L—2 1> UwrL——L,
Yy Y
2 < Uyw+-—y, 2§Ly’w+z;.

For example, suppose we have constraints with a term %

in such a compact set defined by

0<z <1,
1<y<2.
Applying the result, we get the convex relaxation as follows

r—2z <0,

rtw—z =<1,
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z—z=0,
zt+22w—2z>=1,
2wty < 3,
dwty =>4,
wty = 2,
0<z<1,
1<y<2,

If we have a constraint =+ %S 2 and an objective function
to maximize z+y, then we add the constraint z+2 < 2 by
substituting —5— to z. The optimal solution to the original prob-

lem is (2%, ") =(1, 2) and the optimal solution to the relaxed

).

problem is determined at (z”,y", 2", w") =(1, 2, 25

3. Development

In Section 2, we have seen the relaxation technique for the
form of product of variables. In this section we will first inves-
tigate product form of linear functions as a generalization of
the result from Section 2.

Later in this section, we will show that some cases of relaxa-
tion give exact reformulation and others give tighter relaxations.

3.1 Product of Linear Functions

Given f(z) and g(y) are linear functions of vector = and
y. Consider the feasible region # generated by following con-
straints

fle)gly) < U,
L < flz) < U,
L, =< gly) < U,

Consider the linearization of f(z)g(y) with substituting
f(z)g(y) == as follows and define the feasible region F’

as
z=< U,

L, < f(z) < U,

L, <g(y) < U,
22 L, f(z)+L;g{y)— L, L,
22 U f(x)+ U gly) - U, U,
2< U, f(e)+ L, gly)— I, U,
2 < L, fle)+ U gly) - UL,

By the same reasoning of (1} and (2), we have

- M

f@)g(y) = max{L,f(x)+L;gly)-L;L,

U f(z)+ Upg(y) = U, U}, e 3)
and
f@)g(y) < min{ U f(z)+L;9(y)— L, T,
L f(@)+ U gly) =L, Uy} @)

Combining (3) and (4), we see that the product f{(z)g(y)
of two linear functions is bounded below by a piecewise linear
convex function and bounded above by a piecewise linear con-
cave function.

It is clear that linearization of the product of functions can

(z)

also be extended to the case of ch @) The basic idea of Section

2 can be applied directly to such extension and the desired relax-
ation can be easily found.

3.2 Exactness of Convex Relaxation

Now we want to investigate exactness of this relaxation under
certain conditions. Following Proposition 1 is a well known re-
sult that commonly arises in optimization problems in the sit-
uation when something happens (z =1) then other condition
should follow that is represented by f(y)=0.

Proposition 1. Consider the set
§:={(z, y)lzf(z) =0,z {0, 1}, y € Y},

where {f(y)ly €Y} is compact; i.e, there exist bounds L, U]
such that L < f(y) < U for all y € Y. Then, set S is equiv-
alent to :

S ={(z, ) |IL(1—2) < fly) < U(1—x),
z<{0,1},y = Y}

Proof. Suppose = =1, then f(y) =0 for both set § and S'.
If =0 then any y satisfies Z < f(y) < U is in the set §
and S'. 0

The set .S can be derived exactly from applying relaxation
technique of Section 3.1. Now we will state a more general
result of exactness which follows readily from the foregoing
technique.

Proposition 2. Consider the following nonlinear feasible region
P, where L < U and | < u, and its relaxation defined by P,

P ={(z,y)la < zf(y) <b, L < fly) < U,z ={l,ul}},



Pyi={lz,y, 2)la< z<b L<fly) < U xs{lul,
zzlfly)+La—Ll, z = ufly)+ Uz — Uu,
z<ufly)+Le—Lu, 2z <1f(y)+ Uz~ UL},

If (z, 9, z)EPZ, then z=zf(y) and (z, y)EP1~

Proof. We can divide P, into two cases that is z =1 and = =u.
If =1 then the last 4 equations in P, are

2= fly)+LI—L = z= If(y),
2> ufly)+Ul— D = z—uf(y) = Ull—u)
zufly) +Ll—ILu = z—uf(y) < L{—w)
2 < If(y)+Ul— Ul = z<1f(y).

Then z=1f(y) and
Ul—u) < z—ufly) < L{l—u) =
I<wu and z—ufly)

L < fly) < U because
=f(y)(l—u). Now if z=u then

2> 1fly)+Lu—Ll = 2—1f(y) = L{u—1),
z=ufly)+Uu—Uu = 2> ufly),
z<uf(y)+Lu—Lu = z< uf(y),
2= Uf(y)+ Uu—Ul = 2—1f(y) < Ulu—1)

gives z=uf(y) and Z < f(y) < U. Therefore, if (z,y, 2)
€ P, then 2=zf(y) and (z,y) € P,. a

If f(y) is discrete and = continuous, we have the analogous
result.

Proposition 3. For given L < U and | < u, define the sets
Pl={{zy)la<zfly) <bl<z<u,
Hy)e{r(L), f(O)}
Pl =A(z,y, 2)la<z<bl<z<u,
fy) @), f(m}},
z= f(L)z+if(y) —1f (L),
2> f(U)+ufly) —uf(U),
2 < flyle+1f(y) —1f(0),
2 < f(L)z+ufly) —uf(L)}.

If (z,9,2z)€EP), then 2==zf(y) and (2,y) =P’ .
Taking Proposition 2 and 3 together, we have the following

Theorem 1. Consider optimization problem (P) which has terms
xf(y), where (z, y) is constrained to be in either P, or P,
and the corresponding relaxed problem (Pp) obtained by re-
placing xf(y) with z and respectively, P, with P,(P," with
Py). The (z, y) component of the optimal solution of problem
(Py) is optimal for problem (P).
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Remark. Thus the relaxation of (P) given by (P) is exact in
the sense that it will always produce an optimal solution for
the original problem.

Immediate result follows that

Corollary 1. Consider optimization problem (P) which has
terms zf(y), where (z, y) is constrained to be in either P,
or P, whose binary terms in P, and P, are linearly relaxed,
and the corresponding relaxed problem (Py) obtained by re-
placing xf(y) with = and respectively, P, with Py(P, with
P,)). If optimal solution (z",y", 2") to (Py) satisfies ©' €
{Lu}or fly)E{F (1), (U
problem (P).

)} then (z°, y*) is optimal for

Remark. Thus the relaxation of (P) given by (Pp) is exact in
the sense that if any one variable of optimal solution of (Py)
is at the boundary point, then it will always produce an optimal
solution for the original problem.

3.3 Tighter Relaxation
Now we want to show one of two alternatives of relaxation
is tighter than the other. Both ways are exact when one of the

variable or function is binary by the exactness shown above.

Proposition 4. Consider the following nonlinear feasible region

S:={(z,y, ) {f1 (@)= fr{y)) g(z) <
L, < fi(z )g
Ly < fylz )gUf
L, <g(z) < U,}.

Let S| be the projection of the reformulation onto the space
of S obtained by linearizing (f,(x)—f,(y)) g(2) by a single
variable, and let S, be projection of the reformulation onto
the space of S obtained by linearizing f,(x)g(2) and
fo(y) g(z) using two separate variables. Then S, is a tighter
reformulation than S, ie.

§,C 8.

Proof. Consider the nonlinear function
(f1(@) = fr(y)) g(2)

over a domain such that each component function has known
lower and upper bounds over its domain or subset of interest;
Le.,
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Lfl = fl(w) = Ufl’
sz = fz(y) = I]fz’
L, < g(z) < U,

Define w=f,(x)—f,{y) which has bounds
L.fl— (]fz sSw= []f]_sz'
Let uw=wg(z), then

uw> (L

1~ Y

109(2) + L[ (@) = £, (y))
~L,(L, - U,)=a,

w= (U, —L; ) g(2) + Glf, (@) = f,(y)]
~U,(U, ~L,) =5,

w < (U —L; ) g(2) + Ly[f, (2) — f,(y)]
~L,(U, ~L,) =7,

w< (L, — U, ) g(2) + U[f,(z) - f,(y)]

The latter four inequalities can be summarized as
max{a, 8} < u < min{ny, 8}, . ()

Now, let v, =f,(z)g(2) and v, =f,(y) g(2). Then

v > Lgfl(m)-l—[/flg(z)—l;fll}g =a,,

v = U}Ig(z)-l-Ugfl(x) []flUg:/Bl’

vy = Ugfl(a:)-i-Lflg(z)—LflUg:'yl,
(

v <L filz

We can summarize the latter eight inequalities as

max{al, ﬁ1}5 v < min{'yl, (51}7 .................................... (6)
max{az, ﬂQ}S vy < min{'y2, 52}_ .................................... 1)

Since ©=v, —v,, the bounds on v, —v, can be determined
from (6) and (7) as

max{a,, f;}—min{yy 6,} < v, —v,
< min{'yl, 51}—max{a2, /82} ................. (8)

Moreover, since o =a, —8,, 3=, =, 7=0 —a,, and

d= —f,, the bounds given by (5) can be written as

max {a; =8y, B, =%} < v; —v, < min{d —ay v —B,}.(9)

- NEH

We will now show that the lower bounds specified by (8)
are always greater than or equal to the lower bounds determined
by (9) and the upper bounds of (8) are always less than or
equal to the upper bounds of (9) ; i.e., the bounds on v, —v,
given by (8) are tighter than those given by (9).

For lower bound, there are two cases to consider.

case 1 o, —68, = B, —,. Consider the four sub-cases
(i) @y 2B8pm =4,
(i) o, <81, % 26,
(iii) a; 2By, 7, 0,

(V) a, € By 7, <6,
For each of these subcases, it follows that

max {ay, B, }—min{y, 6}=a,— 6, =max{a, — 0y 0, —%}

case 2 3, —, = a, —4,. For the same foregoing subcases (i)
through (i—v), it follows that
max{a;, f}-min{y, &}= 8 —7,
= max{oz1 — &, 5 ——72}. |

4. Concluding Remark

We have discussed useful convex relaxation technique which
can be applied to various extensions to the form of product
of variables and/or functions. Also we found that if one of varia-
ble or the function is optimal at the boundary point under the
convex relaxation, then the projection of such an optimal point
onto the domain of the original problem produces an optimal
solution to the original problem. In the sense of better bound,
we suggested a tighter relaxation of the product form by in-
troducing more variables.
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