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1. Introduction

Even though stochastic demand assumption with deterministic
supply is adopted in most of the single-period inventory model,
in many real-life situations, one can easily observe random gaps
between the originally placed order quantity and the actually
achieved quantity. Increased popularity of global sourcing is one
big reason for generating less than perfect supply processes from
suppliers to retailers. For example, to reduce purchase costs and
attract a larger base of customers, retailers such as Wal-Mart,
Home Depot and Dollar General are constantly seeking suppliers
with lower prices and finding them at greater and greater dis-
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tances from their distribution centers (DCs) and stores. Conse-
quently, a significant proportion of shipped products from over-
seas suppliers is susceptible to defects. Reasons for defects in-
clude missing parts, misplaced products (at DCs, stores) or mis-
takes in orders and shipments. A similar example could be a
typical production line where the production yield assumes less
than 100% resulting in a different number of goods manufac-
tured than originally planned. In these situations, the problem
is how to choose the size of an order or how many parts to
begin production to meet a one time fixed demand. White [17]
solved the problem of determining the optimal initial lot size
under uncertain production yield and provided a critical value
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much like the classical newsvendor solution. One of the earliest
papers on the uncertain supply under economic order quantity
(EOQ) framework was written by Silver [14]. He studied two
cases, in the first case, the standard deviation of the amount
received is independent of the lot size, while in second case
the standard deviation is proportional to the lot size. One of
the interesting results among his findings was that the optimal
order quantity depends only on the mean and the standard devia-
tion of the amount received. Shih [13] studied the optimal order-
ing schemes in a case where the proportion of defective products
in the accepted lots has a known probability distribution. The
yield rate is thus between 0 and 1 and is assumed to be in-
dependent of the lot size. Similar to Silver’s results he showed
that the optimal order quantity depends only on the model pa-
rameters and the first two moments of the underlying yield
distribution. As expected, the optimal order quantity is greater
than that of the certain yield case, but it was less intuitive that
the optimal lot size decreases when the variance of the yield
rate distribution increases. Noori and Keller [9] extended Silver's
model to obtain an optimal production quantity when the amount
of products received at stores assumes probability distributions
such as uniform, normal and gamma. They showed that for a
uniform demand case the optimal ordering policy is independent
of the yield distribution, but Rekik et al. [11] found out that
the Noori and Keller’s result is not always valid for all system
parameters. They identified several cases defined by certain
ranges of system parameters to investigate the validity of Noori
and Keller’s previous results. For the detailed survey of random
yield literature, including exclusive random yield models, Yano
and Lee [18] is the most popular reference.

Most of the previous research on the single-period inventory
problem focused on finding the optimal size of order which
maximizes the expected total profits, but if we consider the risk
preferences, especially risk aversion of the decision maker, those
expected value approaches may lead to suboptimal solutions.
Suppose a situation is tried where the decision maker can make
two choices. With the first choice, he can make either 1 million
dollars or 0 dollars with 50% chance each, and with the second
choice he receives 0.4 million dollars for certain. Even though
the expected value for the first choice is 0.5 million, which
is greater than that of the second choice, few will choose the
first option.

To overcome this ‘flaw of average’ in solving the single-peri-
od inventory problem many researchers studied the behavior of
Risk Averse Newsboy. These include Lau [7], Spulber [15],
Bouakiz and Sobel (2], Eeckhoudt et al. 5], Agrawal and
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Seshadri [1], Chen and Federgruen [3], Seifert et al. [12], Chen
et al. [4], Haksoz and Seshadri [6]. Lau [7] examined news-
vendor solutions which maximize expected utility. He also in-
vestigated the new objective function of maximizing the proba-
bility of achieving a budgeted profit. Eeckhoudt et al. [5] exam-
ined the risk and risk aversion in a single-period inventory prob-
lem where demand is stochastic while supply is deterministic.
They show that the optimal order quantity decreases as decision
maker’s risk-aversion increases because a lower order amount
definitely reduces the inherent risks of the outcome. In Bouakiz
and Sobel [2], they explored the newsvendor problem with the
exponential utility and showed that a base-stock policy is opti-
mal when a multi-period newsvendor problem is optimized with
an exponential utility criterion. Agrawal and Seshadri [1] also
investigated the newsvendor problem with the objective being
maximizing the expected utility. In their problem setting, both
price and order quantity are decision variables for the risk-averse
retailer.

In our paper, we extend these researches to the case of un-
certain supply situation, but instead of adopting utility function
and finding the optimal solution, which maximizes the expected
utility as in Eeckhoudt et al. [5], we introduce a constraint, so
called ‘Value-at-Risk’, into the given model to reflect the deci-
sion makers risk preferences. Then we investigate the various
impacts of risk preference, which is specified by parameters
of ‘Valye-at-Risk’, on the optimal order quantity using relevant
numerical examples.

This paper is organized as follows: in Section 2, we describe
the basic newsvender model under the assumption of unreliable
supplier. We review results from the previous literature on the
concavity of the objective function followed by the optimality
condition which is the necessary condition for any order quantity
to be optimal. Then, we analyze the impact of the mean and
variance of the yield distribution on the resulting optimal sol-
ution when the uncertain yield rate follows Beta and Uniform
distributions respectively. In Section 3, we add ‘Value-at-Risk’
constraint into the basic model and discuss the analytical sol-
ution procedure for this new problem. Numerical studies are
conducted to discuss the impact of the constraint on the resulting
solutions. Finally, Section 4 concludes the paper.

2. Optimal Order Quantity

Consider a newsvendor problem with unreliable supplier in-
stead of uncertain demand. We assume the amount of demand,
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0, is known, but if retailer’s order quantity is Q, then the amount
of arrived product at retailer is Y(, where Y represents random
proportion of Q with distribution function G(y) (p.d.f. g(»)).
Let’s define p as retail price and w as wholesale price. And
all unsold products are returned to the supplier at salvage price
s. Then, we can define the profit function as follows

7,(Q) = pmin(0, YQ) —w YQ+5(YQ—0)*
where 2" =max (z,0) or equivalently,

if YOQ<0

otherwise

_[p—w)¥YQ
Z(Q)= {(p—S)G-(w~S) YQ
Since Z,(Q) is concave function in 0, and expectation oper-
ator preserves the concave property, E[Z (Q)] is concave func-
tion in Q. If Q is integer, we can obtain optimal order quantity

Q", which maximizes the expected profit, satisfying the follow-
ing equation.

Q =sup o{QIEIZ(Q+1D]-EZ(Q)] =0}

For more detail analysis, we assume @ to be real. Then the
expected profit is

0

ﬁ 1
Ez(Q)= [ ?z(Qacw)+ [, 2 (Qact)
Q

8
:fOQ(p—w)deG(y)

The expected profit function is concave in (. This concavity
is guaranteed because the second derivative of E[Zy(Q)] is neg-

ative

8*E(Z,(Q)] 0> 0
T:_ (p_S)EQ(E) =0

Thus this concavity allows us to rely on the first order con-
dition to find the optimal order quantity that maximizes the ex-
pectation profit function. The first derivative of E£[Z, (Q)] is

YAV e

It can be shown that the optimal order quantity, @, satisfies

i

K
f @ 4dGly)= w :EY ................................................. 22)
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Once the distribution of ¥ and the demand level, 8 are speci-
fied, the corresponding solution can be computed using the
above equation. And, the expected profit at the optimal order
quantity, i.e, E[ZH(Q*)], is simplified to

E(Z(Q))=(p—s)0(1— G( Q*))

If the supplier is very greedy and has more power over the
retailer, he wants to set wholesale price as large as possible
w = p. In this case the equation (2.2) gives us Q" =4, since
(w-s)=(p-s). This implies that retailer orders only the amount
of demand, and he does not gain any profit. It sounds quite
natural because if the retailer orders beyond the amount of de-
mand, there exist possibilities that he loses the money because
of the overstock resulting in cheap salvage profits. Therefore,
though the retailer has no gain, it should order as much as possi-
ble without any loss to keep the relationship with customer.

If the supplier and the retailer are in equivalent position, the
supplier should set wholesale price less than retail price p>w.
In this case, we can obtain @  >¢ and the retailer can expect
more profit than if order quantity is 6. From equation (2.2),
we can derive

BlZ(Q)] = (p—s)8(1- G gu) > (p—w)EY

The above shown expression makes sure that optimal order
quantity( Q") gives us more expected profit than when order
quantity is 8, since the right term is the expected profit when
order quantity is 6.

Now we consider how the optimal order quantity(Q")
changes as the variance of ¥ changes while we fixed the ex-
pected value EY at a constant. If variance of Y is close to 0,
then, as would be expected, the optimal order quantity becomes
6/ EY, because with no variability we know the exact amount
will be received. Thus we only need to order 8/E£Y to meet
the demand.

To further investigate the impact of supply variability on the
resulting optimal order quantity we consider two examples in
the following examples. In these examples we use the fixed
demand ¢ =100 and two different probability distributions for
Y, which are Beta(o, 8) and Uniform(L,U) respectively.

<Table 1> and <Table 2> summarize results from the first
example when Y ~Beta(o, ) with EY=0.8 and EY=09
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respectively. As shown in both Tables, reduction in supply varia-
bility results in higher expected payoff regardless of different
parameter settings. Readers who want detailed discussion on this
are referred to Lin and Hou [8]. Based on similar findings shown
in our examples, they investigated trade-off between the in-
ventory savings from variability reduction and the capital invest-
ment for reducing the yield variability.

In <Table 1>, when the cost vector (p, w, s) is equal to (10,
4, 2), we can sce that the optimal order quantity is not always
increasing as the variance decreases. The optimal order quantity
initially increases as the variance decreases from 0.071 to 0.015.
But, once the variance decreases below 0.015, the optimal quan-
tity is not further increasing but starts to decrease and finally
converges to 8/EY =125 as the variability becomes 0. <Table
2> shows similar results as in <Table 1>. With the cost vector
(p. w, s) set at (10, 4, 2), the optimal order quantity, Q" increases
until the variance reduction reaches 0.002, and after passing
0.002 the order quantity steadily converges on 6/EY = 111.11
as the variance goes to 0.

When ?~Uniform(L, U), after some manipulation, optimal
order quantity (") can be obtained as follows,

(@)=

Since Y is uniform random variable, we can set U=EY +
I and L =EY-]. Substituting these expressions in (2.3), then we
can obtain the following formula:

(Q*)Z — he([) ........................................................................ (2.4)
where
h(I) = (I+kEY)? +4@_(—1‘”)(w)2;8)(EY)2
p—s
= 2w — (p+s)
p—s

In this formula, we know that since A(J) is a convex function
in I, when 7 <—kEY, h(l) is decreasing and Q" is increasing,
and when 7 >—kEY , h(]) is increasing and Q" is decreasing;
therefore, the value of £ plays an important role in characterizing
optimal order quantity )", Note that there exists a positive rela-
tionship between Var(Y) and I, since Var(Y)=1%/3

Theorem 2.1 Under the above shown setting, there exist the

following properties in Q.

aoT=

if k=0 Q* is increasing as I is decreasing
EY—1 x

if <k=<0 @ have mazium value at [=—kFEY
FY—1 X .

if V5% >k ) is decreasing as [ is decreasing

Proof. The proof of Theorem 2.1 is substituted by explanation
of the equation A(I) shown above together with the fact that
h(l) is a parabola and 7 < EY.

In <Table 3>, when the cost vector is (10, 8, 2), Q”is increas-
ing as / is decreasing since k=2 > 0 and when (p, w, s) = (10,
4,2), Q" is decreasing as I is decreasing since k = -0.5 < (EY
- 1YEY =-0.25. When (p, w, s)=(10,5.5,2), Q" has the max-
imum value at (L, U)=(0.70, 0.90), since £ =-1/8. <Table 4>
show the results when EY=0.9. We can also observe that the
properties of the optimal order quantity, Q°, satisfy the con-
ditions specified in Theorem 2.1.

As the summary of these two examples we can assert the
following for the newsvendor problem with uncertain supply :

® The reduced variability in supply always results in increased
profits ;

® The optimal order quantities are not necessarily increasing
or decreasing upon reduced supply variability (it depends on
the distribution of Y and model parameters (p, w, s)) ;

® As the variability vanishes, the optimal order quantity con-
verges on 6/EY

3. Downside Risk Constraint

In this section, by defining a constraint known as ‘Downside
Risk’ or ‘Value-at-Risk’, we study the optimal order quantity
involving a constraint limiting downside risk.

We consider downside risk of the retailer as the probability
that his realized profit is less than or equal to its specified target
profit. Let « be the target profit, then the downside risk of
the retailer is defined to be the probability that its probability
is no greater than a, ie.

P(Z(Q) < a)

The retailer wants to choose an order quantity Q which
maximizes its expected profit while satisfying the fact that
its prespecified downside risk does not exceed a specified
probability(5). With this scenario the newsvendor problem
now becomes,
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Ma:er20
s.t P(Zy(Q) < a) < B ................................. (3.6)

Note that this problem can be thought of as a risk-aversion
problem. That is, for risk-aversion pairs (o, 8,) and (a,, 3,)
if (; = a,) and {3, < 3,). then the second pair represents
a higher risk-aversion to the given risk than does the first.

Now we can solve problems (3.5) and (3.6). We assume that
a < (p—w)o, since Z,(Q) < (p—w)6 for any Q. This means
that if a > (p—w)8, there exists no feasible solution for any
B, because downside risk probability is always 1.

The following proposition characterizes the downside risk
probability.

Proposition 3.1 For any target profit level o < (p—w)0, the
downside-risk probability becomes,

P(Z(Q) = a)

1 ifQ<Q,
=1 G(Q/Q) if Q< Q< @y (37)
1+3Q/Q~G(QJ/Q) if Q> @,
where Q, =a/(p—w) and @Q,= (1;‘_58)9.

Proof. The downside risk in equation (3.6) can be rephrased as

P(Z(Q) <a)=P(Z(Q) <alY< %)p( y< %)
+P(Z(Q) < aly> %)P(yg %
= in(—2 0
= P(Y < min( P—voy Q))

)

+P(YV> max((p;g)e_g %)

(w—s)Q @

Since o < (p—w)@, the following relationship exists
Q,<6=Q,

Together with the relationship, we have

@ Q,
Q)_’_P(YZ 6)

P(2(Q) <a)=P(¥=

When @ < @, then the first term has to be 1 and the second
term vanishes; when @, < @ < @, the first term takes a value
less than 1 while the second term is still zero. These observations
yield downside-risk probability as in equation (3.7).

If the distribution of Y is specified and parameters of down-
side-risk (c, 3) are determined, we can calculate the down-
side-risk probability and corresponding optimal order quantity

satisfying the objective function (3.5) with the given constraint
(3.6).

Assuming the cost vector (p, w, s) is (10, 6, 2), <Figure 1>
and <Table 2> exhibit the shapes of the downside-risk proba-
bilities when Y ~Beta(1, 0:25) and ¥ ~U(0.70, 0.90), respectively.
These figures illustrate that the range of the feasible solution
for constraints are shrinking as « increases. It can be shown
that all feasible order quantities are described by a closed and
bounded interval. Moreover the downside-risk probability has
the minimum value at @= @,. Denoted by S, the feasible sol-
ution set has the form of S={Q1Q, < @< @,}. Then the
optimal solution () can be computed by comparing the
bounded values (@, and @,). If Q" € S, where Q*is uncon-
strained solution obtained in (2.2), then Q= Q. Otherwise,
if Q"< (=)Q,(@Q,), then @ =@,(Q,) by concavity prop-
erty of E[Zy(Q)].
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<Figure 1> ¥ ~ Beta(1,0.25)
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<Figure 2> ¥ ~ U(0.7,0.9)
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<Table 5> show the numerical examples when Y ~Beta(l,
0.25) and (p, w, 5)=(10, 6, 2) under various combinations of
downside-risk parameter values (o, 8). In <Table 5>, N/F in-
dicates that there exists no feasible solution set. When o = 200
and 8=0.1, since the lower bound is greater than @, the opti-
mal order quantity (¢)) is the same as the lower bound (@)
by concavity of E[Zy(Q)]. In almost all cases of our example,
the interval S contains the optimal order quantity (Q") of the
unconstrained problem, resulting that the constrained optimal
solution is, ;= @". As can be seen in <Table 5>, higher val-

ues of o may induce no feasible solution set.

As explained in the beginning of this section, larger o and
smaller 3 constitutes the higher risk aversion pair. From <Table
5>, the optimal order quantity increases as o increases while
B is fixed at values 0.1, 0.2, 0.3. Similarly, for fixed values
of « the optimal order quantity increases as 3 decreases. From
these results we can conclude that in uncertain supply problems
the higher risk aversion increases the size of the order to com-
pensate for the variability in the supply amount. It is interesting
to compare these results with the regular newsvendor model
where only the uncertainty is in the demand variability. In
Eeckhoudt et al. [5], they adopted the concave transformation
of the utility function to express the higher risk aversion and
solved the optimization problem where the optimal order quan-
tity maximizes the expected utility. One of their results is that
the retailer orders less and less as his degree of risk aversion
increases, which is in contrast to our result. Under the demand
uncertainty, the retailer with severe risk aversion does not order
even a single product for fear of losing its investments. On the
contrary, under the supply uncertainty, if there exists a certain
demand amount, the retailer with higher risk aversion increases
its order, making sure to meet the given demand. Even though
methods of describing the risk aversion are not exactly the same
between ours and Eeckhoudt’s [5] the fundamental reasoning
is identical, and this fact entitles our finding meaningful.

In our examples, we could luckily obtain the closed and
bounded feasible solution set together with the optimal order
quantity, but generally it is difficult to obtain the closed form
of S, the feasible solution set. This is due to the fact that the
downside-risk probability depends on distribution of ¥ and thus
we cannot guarantee the monotonicity or the convexity of the
downside risk in terms of . In other words, it is possible to
have two or more discrete intervals representing parts of the
feasible solution set. To overcome this complication and derive
the closed form solution of § we sacrifice some generalities
by restricting the value of « to be zero in the rest of this section.

But, luckily, one of the natural selections of « is zero because
if o is zero it implies a specified scenario where the retailer
wants to avoid the situation if his return on investment (ROI)
becomes negative; in other words, if he becomes bankrupt.
Denoted by @, =(p—s5)8/(w—s), the downside-risk proba-
bility becomes

P(Z(Q) <0)=P(¥= )

When Q< @,, downside-risk probability is equal to zero,
since Y'< [0,1]. And as Q goes to infinity, the corresponding
downside-risk probability has a monotonically increasing prop-
erty and converges to 1. <Figure 3> illustrates this. By the above
shown properties of downside-risk probability and concavity of
E[Z,(Q)], we can conclude the following theorem.

Theorem 3.2 For target profit level o= 0, the optimal solution
for the problem (3.5) and (3.6) is

Q;=min(Q", Qy)

where Q; = Q,/ G~ (1-5)
Proof. The proof of Theorem 3.2 is substituted by <Figure 3>.

PZ,(Q)<0)

_(p-9)¢ -
& =" %=a-p

<Figure 3> Downside-Risk Probability when o« =0

4. Summary and Conclusion

We have first reviewed the previous results of uncertain sup-
ply problems. The decrease in supply variability does not neces-
sarily increase the optimal order amount in both cases where
the yield ratio Y follows Beta and Uniform distributions res-
pectively. The reduction in supply variability, however, always
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provides the retailer with increased profits.

With the downside-risk constraint the considered optimization
problem could reflect the decision maker’s risk attitude. The
downside-risk parameter pair (a, 3,) exhibits higher risk aver-
sion than another pair (a,, 3,) whenever (o, > «,) and
(8, < B,). Under the fixed demand, examples show that the
increased risk aversion increases the retailer's order quantity
whenever the supply amount is uncertain. This is the exact oppo-
site result compared to the one from traditional newsvendor
problems where the only uncertainty resides in the demand side.
Even though there exist vast amount of research on inventory
problems under supply uncertainty, few have considered the im-
pact of the risk aversion on the resulting solutions. Our approach
should be the first to consider the risk aversion and the uncertain
supply problem.

In section 3, we assume ¢ to be zero to make the presentation
easier. It will be a challenging task to find the closed form
of § with general values of «. Furthermore, the way the risk
aversion generally works in uncertain supply problem is worthy
of future study. One approach is to adopt the utility function
as in Eeckhoudt et al. [5] under fixed demand and uncertain
supply assumptions.
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Appendix
<Table 1> Y~ Betala, 8) with EY =0.8 <Table 3> Y~ Uniform(L,U) with EY=0.8
(p, w, ) (10, 8, 2 (10, 6, 2) (10, 4, 2) (p, w, s) (10, 8, 2) (10, 5.5, 2) (10, 4, 2)
a B Var(Y) @ EAQ) Q@ EZAQ) @ EZQ) L U] @ ExQ) @ Ez2Q) @ FzZ(@)
1025 0.071 10022 155.60 | 103.01 317.51|117.93 491.14 0.60 1.00 | 109.11 166.67 | 125.00 400.00 | 138.68 55778
2050 0.046 | 101.87 160.81 | 108.60 32833 | 127.06 514.15 0.62 098] 110.67 16989 | 12535 405.01 | 137.57 562.42
3075 0034 | 10403 16265 | 11242 335.10 {13052 527.22 064 096 | 11225 17289 | 12563 41003 | 13639 566.97
4 100 0027 10592 16446 | 11487 3405213195 s36q0)| | 066 094 | 11384 17598 | 12583 41505 13514 57143
5125 0022 |10747 166.16 | 116.54 344.90 | 132.57 542.57 0.68 092\ 11544 17915 | 12595 42008 | 13382 575.79
o 150 0015 110873 16769 | 11795 34548 | 13222 54751 070 090 | 117.04 182.40 | 12599 42510 | 13245 580.07
Sl S . : : ' : 072 088 | 118.64 18574 | 12595 430.11 | 131.04 584.24
71750016 | 109.78 16005 | 11866 35147 13289 55143 | f974 gg6 | 12025 189.17 | 12583 435.12 | 12958 58832
8 200 0015 11067 17026 11937 35401 | 13287 554641 |76 0.84| 121.84 19269 | 125.63 440.10 | 128.08 59231
9 225 0.013 | 11143 171.35[ 11994 356.20 | 132.79 55731 078 0.821 123.43 19630 | 12535 445.06 | 126.55 596.20
10 250 0012 |112.08 17232 | 12040 358.11 | 132.69 559.59 080 0.80| 125.00 200.00 | 125.00 450.00 | 125.00  600.00
<Table 2> Y~ Beta(a, ) with EY=0.9 <Table 4> Y~ Uniform(L,U) with EY=0.9
(p, w,5) (10, 8, 2) (10, 6, 2) (10, 4, 2) (p, w, s) {10, 8, 2) (10, 5.5, 2) (10, 4, 2)
a 8 Var(Y| @ EAQ) @ EZAQ) @ EAQ) L Ul @ EAQ)| @ E2Q) @ FEZ(Q)
1011 0.043 | 10001 159.69 | 10040 339.98 | 10581 523.76 0.80 1.00 110483 18424 | 11135 40779 | 117.04  582.40
2022 0028 [100.09 175.83 | 101.44 356.84 | 109.35 544.65 081 0.99 | 10546 18574 | 11139 410.01 | 11648  584.24
3033 0021 10034 179.12 (10274 36141 | 11161 55262 082 098110610 18725 | L1141 41224 | 11590 386.07
ot s s Jo i s [00 7D e e e o
5055 0.014 10122 180.70 | 104.90 365.75 | 113.79 561.26 085 095 10799 19190 | 11140 41851 | 11415 59143
10 L110.007 103,25 182,90 | 107.52 37234 | 11493 STLT3 | {86 094 | 108.62 19348 | 11137 42114 | 11355 593.18
20 222 0.004 | 105.35 186.01 |109.12 379.00 | 114.74 580.06 087 093] 10925 195.08 | 11133 42336 | 11295 594.92
30 333 0.003 |106.40 187.90 | 109.81 382.43 | 114.39 583.86 088 092 10987 19670 | 11127 42557 | 111.34  596.63
40 4.44 0.002 | 107.04 189.18 | 110.12 384.60 | 114.10 586.12 0.89 091 | 11049 19834 | 111.20 427.79 | 111.73 59832
50 555 0.002 | 107.48 190.12 | 11032 386.13 | 113.87 587.66 090 090 | 11111 200.00 | 111.11  430.00 | 111.11  600.00
<Table 5> Y ~ Beta(1,0.25) and (p,w,s) = (10,6,2)
=01 B=02 3=0.3
@ Q; Qy Q. EAQ)| @ Qu Q. EZQ)| @ Qy Q. EZQ})
0 0 20005 10301 31751 0 20049 10301 31751 0 20209 10301 31751
20 1488 19504 10301 31751 863 19542 103.01 31731 668 19688 10301  317.51
40 2977 19003 103.01 31751 | 1727 19036  103.01  317.51 | 1336  191.68  103.01  317.51
60 4465 18502 103.01 31751 | 2590 18530  103.01 31751 | 2004 18648 10301 31751
80 59.54 18002  103.01 31751 | 3453 18025  103.01 31751 | 2672 18129 10301 31751
100 | 7442 17501 10301 31751 | 4317 17520 10301 31751 | 3340 17611  103.01 31751
120 | 8930 17001  103.01 31751 | 5180  170.16 10301 31751 | 4008 17094 10301 31751
140 | 10419 16500 10419 31734 | 6043 16512 10301 31751 | 4676 16578  103.01 31751
160 | 11907 16000 11907 30059 | 69.07  160.09 10301 31751 | 5344 16063  103.01 31751
180 | 13396 15500 13396 27175 | 7770 15506 10301 31751 | 6002 15549 10301 31751
200 | 14884 15000 14884 23736 | 8633 15004 10301 31751 | 6680 15037 10301  317.1
20 | NF NF N/F 0 9497 14502  103.01  317.51 | 7348 14527 10301  317.51
240 | NF NF NFF 0 10360 14001 10360 31746 | 80.16  140.18  103.01 31751
260 | NF NF NF 0 11224 13500 11224 31067 | 8684 13511 10301 31751
280 | NF N/F N/F 0 12087 13000 12087 29754 | 9352 13006 10301 31731
300 | NFF N N/ 0 NF N/F N/E 0 10020 12502 103.01  317.51
30 | NF NFF N/F 0 N/F N/ N/F 0 10688 12001 10688  317.47
340 | NFF N/F N/F 0 N/F N/F N/F 0 113.56 11500 11356  312.96
360 | NF NFF N/ 0 N/F N/F N/F 0 N/F N/F NFF 0




