DOI QR코드

DOI QR Code

MICROLEAKAGE OF COMPOSITE RESIN RESTORATION ACCORDING TO THE NUMBER OF THERMOCYCLING

열순환 횟수에 따른 복합레진의 미세누출

  • Kim, Chang-Youn (Department of Conservative Dentistry, College of Dentistry, Dankook University) ;
  • Shin, Dong-Hoon (Department of Conservative Dentistry, College of Dentistry, Dankook University)
  • 김창윤 (단국대학교 치과대학 치과보존학교실) ;
  • 신동훈 (단국대학교 치과대학 치과보존학교실)
  • Published : 2007.03.31

Abstract

Present tooth bonding system can be categorized into total etching bonding system (TE) and self-etching boding system (SE) based on their way of smear layer treatment. The purposes of this study were to compare the effectiveness between these two systems and to evaluate the effect of number of themocycling on microleakage of class V composite resin restorations. Total forty class V cavities were prepared on the single-rooted bovine teeth and were randomly divided into four experimental groups: two kinds of bonding system and another two kinds of thermocycling groups. Half of the cavities were filed with Z250 following the use of TE system, Single Bond and another twenty cavities were filled with Metafil and AQ Bond, SE system. All composite restoratives were cured using light curing unit (XL2500, 3M ESPE, St. Paul, MN, USA) for 40 seconds with a light intensity of $600mW/cm^2$. Teeth were stored in distilled water for one day at room temperature and were finished and polished with Sof-Lex system. Half of teeth were thermocycled 500 times and the other half were thermocycled 5,000 times between $5^{\circ}C$ and $55^{\circ}C$ for 30 second at each temperature. Teeth were isolated with two layers of nail varnish except the restoration surface and 1 mm surrounding margins. Electrical conductivity (${\mu}A$) was recorded in distilled water by electrochemical method. Microleakage scores were compared and analyzed using two-way ANOVA at 95% level. From this study, following results were obtained: There was no interaction between variables of bonding system and number of thermocycling (p = 0.485). Microleakage was not affected by the number of thermocycling either (p = 0.814). However, Composite restoration of Metafil and AQ Bond, SE bond system showed less microleakage than composite restoration of Z250 and Single Bond, TE bond system (p = 0.005).

작금의 치질 접착시스템은 도말층 처리 방법에 따라 전부식형과 자가부식형 접착시스템으로 대별된다. 이러한 두 가지 접착시스템의 효용성을 비교, 평가하고 열순환 횟수에 따른 미세누출도 변화를 측정하기 위해 각각의 접착시스템으로 수복된 우치 5급 수복물에, 수복 초기의 효용성를 의미하는 500회의 열순환 자극과 상대적으로 긴 내구성을 의미하는 5,000회의 열순환 자극을 부여한 다음, 전기화학적 방법으로 측정하였다. 건전한 40개의 단근관을 가진 우치를 이용하여 백악법랑 경계부를 중심으로 5급 와동을 형성하였으며, 치아를 각각 10개씩 4개의 실험군 (열순환 횟수 2종 $\times$ 복합레진 수복 2개 군)으로 분류하였다. 20개의 치아에는 전부식형 접착시스템인 Single bond와 Z250 (shade A4)을, 나머지 20개의 치아에는 자가부식형 접착시스템인 AQ bond와 Metafil (shade A4)로 각각 충전하고 광중합기 (XL2500, 3M ESPE, St. Paul, MN, USA)를 이용하여 $600\;mW/cm^2$의 광도로 40초간 광중합하였다. 모든 시편을 실온에서 24 시간동안 증류수에 보관한 다음, 연마하고 각 수복물의 반은 섭씨 5도와 55도의 수조에 30초씩 담궜으며 이동 시간 10초의 열순환 (thermocycling)을 500회 시행하였고, 나머지 반은 5,000회 실시하였다. 미세 전류 측정을 위해 직류 공급원인 TOE 8841 (TOELLNER electronic instrument GMBH, Germany)을 이용하여 10 V의 전압을 부여하였으며 6514 system Electrometer (Keithley Co., Cleveland, Ohio, USA)로 미세전류 (${\mu}A$)를 측정하였다. 전류를 흐르게 한 다음 5-10분까지 20초 간격으로 측정 한 15개 측정치의 평균값을 시편의 미세전류 측정치로 인정하였다. 각 군간의 미세전류 측정치에 대한 유의성은 수복방법 및 열순환 횟수의 변수에 대한 Two-way ANOVA test로 95% 유의 수준에서 검증하여 다음과 같은 결과를 얻었다. 수복방법과 열순환 횟수 사이의 상호작용은 없었으며 (p = 0.485), 열순환 횟수에 따른 미세누출의 차이도 없었다(p = 0.814). 그러나 자가부식형 접착시스템인 AQ Bond와 Metafil로 수복된 실험군이 전부식형 접착시스템인 Single Bond와 Z250으로 수복된 군에 비해 적은 미세누출도를 보였다 (p = 0.005).

Keywords

References

  1. Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 34:849-853. 1955 https://doi.org/10.1177/00220345550340060801
  2. Mjor IA. Human coronal dentine: structure and reactions. Oral Surg Oral Med Oral Pathol 33: 810-823, 1972 https://doi.org/10.1016/0030-4220(72)90451-3
  3. Gwinnett AJ, Jendresen M. Micromorphological features of cervical erosion after acid conditioning and its relation with composite resin. J Dent Res 7: 543-549, 1978
  4. Fusayama T, Nakamura M, Kurosaki N, Iwaku M. Non-pressure adhesion of a new adhesive restorative resin. J Dent Res 58:1364-1370, 1979 https://doi.org/10.1177/00220345790580041101
  5. Shimada Y, Iwamoto N, Kawashima M, Burrow MF, Tagami J. Shear bond strength of current adhesive systems to enamel. dentin and dentin-enamel junction region. Oper Dent 28: 585-590, 2003
  6. Tay FR. Gwinnett AJ, Wei SH. The overwet phenomenon: an optical. micromorphological study of surface moisture in the acid-conditioned, resin-dentin interface. Am J Dent 9:43-48, 1996
  7. Perdigao J, Van Meerbeek B, Lopes MM, Ambrose WW. The effect of a re-wetting agent on dentin bonding. Dent Mater 15:282-295, 1999 https://doi.org/10.1016/S0109-5641(99)00049-4
  8. Frankenberger R. Sindel J, Krjamer N, Petschelt A. Dentin bond strength and marginal adaptation: Direct composite resins vs. ceramic inlays. Oper Dent 24: 147-155, 1999
  9. Swift EJ, Wilder AD, May KN, Waddell SL. Shear bond strengths of one-bottle dentin adhesives using multiple applications. Oper Dent 22:194-199, 1997
  10. Brunton PA, Cowan AJ, Wilson MA, Wilson NH. A three-year evaluation of restorations placed with a smear layer-mediated dentin bonding agent in non-carious cervical lesions. J Adhes Dent 1:333-341. 1999
  11. Spencer P, Wang Y, Walker MP, Wieliczka DM, Swafford JR. Interfacial chemistry of the dentin/adhesive bond. J Dent Res 79:1458-1463, 2000 https://doi.org/10.1177/00220345000790070501
  12. Watanabe I. Nakabayashi N, Pashley DH. Bonding to ground dentin by a phenyl-P self-etching primer. J Dent Res 73:1212-1220, 1994 https://doi.org/10.1177/00220345940730061301
  13. Torii Y, Itou K. Nishitani Y, Ishikawa K. Suzuki K. Effect of phosphoric acid etching prior to self-etching primer application on adhesion of resin composite to enamel and dentin. Am J Dent 15:305-308, 2002
  14. Erhardt MCG, Cavalcante LMA, Pimenta LAF. Influence of Phosphoric Acid Pretreatment on Self-Etching Bond Strengths. J Esthet Resto Dent 16:33-40, 2004 https://doi.org/10.1111/j.1708-8240.2004.tb00448.x
  15. Ernst CP. Positioning self-etching adhesives: versus or in addition to phosphoric acid etching? J Esthet Resto Dent 16:57-69, 2004 https://doi.org/10.1111/j.1708-8240.2004.tb00454.x
  16. Brackett WW, Haisch LD, Pearce MG, Brackett MG. Microleakage of Class V resin composite restorations placed with self-etching adhesives. J Prosthet Dent 91 :42-45, 2004 https://doi.org/10.1016/j.prosdent.2003.10.003
  17. Fabianelli A, Kugel G, Ferrari M. Efficacy of self-etching primer on sealing margins of class II restorations. Am J Dent 16:37-41, 2003
  18. Santini A. Plasschaert AJ, Mitchell S. Effect of composite resin placement techniques on the microleakage of two self-etching dentin-bonding agents. Am J Dent 14: 132-136, 2001
  19. Cardoso PE, Placido E, Francci CE, Perdigao J. Microleakage of class V resin-based composite restorations using five simplified adhesive systems. Am J Dent 12:291-294, 1999
  20. Turkun SL. Clinical evaluation of a self-etching and a one-bottle adhesive system at two years. J Dent 31: 527-534, 2003 https://doi.org/10.1016/S0300-5712(03)00107-6
  21. Crim GA, Chapman KW. Reducing microleakage in class II restorations: an in vitro study. Quint Int 25:781-785, 1994
  22. Iwami Y, Yamamoto H, Ebisu S. A new electrical method for detecting marginal leakage of in vitro resin restorations. J Dent 28:241-247, 2000 https://doi.org/10.1016/S0736-5748(99)00079-9
  23. Mattison GD, von Fraunhofer JA. Electrochemical microleakage study of endodontic sealer/cements. Oral Surg Oral Med Oral Pathol 55:402-407, 1983 https://doi.org/10.1016/0030-4220(83)90195-0
  24. Iwami Y, Yamamoto H, Ebisu S. A new electrical method for detecting marginal leakage of in vitro resin restorations. J Dent 28:241-247, 2000 https://doi.org/10.1016/S0736-5748(99)00079-9
  25. Nakano Y. A new electrical testing method on marginal leakage of composite resin restorations. Japan J Cons Dent 8: 1183-1198, 1985
  26. Delivanis PD, Chapman KA. Comparison and reliability of techniques for measuring leakage and marginal penetration. Oral Surg Oral Med Oral Pathol 53:410-416, 1982 https://doi.org/10.1016/0030-4220(82)90444-3
  27. Gueders AM, Charpentier JF, Albert AI, Geerts SO. Microleakage after thermocycling of 4 etch and rinse and 3 self-etch adhesives with and without a flowable composite lining. Oper Dent 31 :450-455, 2006 https://doi.org/10.2341/05-55
  28. Besnault C, Attal JP. Influence of a simulated oral environment on microleakage of two adhesive systems in Class II composite restorations. J Dent 30: 1-6, 2002 https://doi.org/10.1016/S0300-5712(01)00050-1
  29. Bedran-de-Castro AK, Cardoso PE, Ambrosano GM, Pimenta LA. Thermal and mechanical load cycling on microleakage and shear bond strength to dentin. Oper Dent 29:42-48, 2004
  30. Aguiar FH, Dos Santos AJ, Franca FM, Paulillo LA, Lovadino JR. A quantitative method of measuring the microleakage of thermocycled or non-thermocycled posterior tooth restorations. Oper Dent 28:793-789, 2003
  31. Pazinatto FB, Campos BB, Costa LC. Atta MT. Effect of the number of thermocycles on microleakage of resin composite restorations. Pesqui Odontol Bras 17: 337-341. 2003 https://doi.org/10.1590/S1517-74912003000400008
  32. Koyuturk AE, Akca T, Yucel AC, Yesilyurt C. Effect of thermal cycling on microleakage of a fissure sealant polymerized with different light sources. Dent Mater 25:713-718, 2006 https://doi.org/10.4012/dmj.25.713
  33. Miyazaki M, Sato M, Onose H, Moore BK. Influence of thermal cycling on dentin bond strength of two-step bonding systems. Am J Dent 11: 118-122, 1998

Cited by

  1. Microleakage of the experimental composite resin with three component photoinitiator systems vol.34, pp.4, 2009, https://doi.org/10.5395/JKACD.2009.34.4.333
  2. Effect of Er:YAG lasing on the dentin bonding strength of two-step adhesives vol.36, pp.5, 2011, https://doi.org/10.5395/JKACD.2011.36.5.409
  3. Evaluation of Shear Bond Strength and Microleakage of Bulk-fill Resin Composites vol.42, pp.4, 2015, https://doi.org/10.5933/JKAPD.2015.42.4.281