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Abstract

Parallel processing algorithms, coupled with advanced networking and distributed computing architectures, improve the

overall computational performance, dependability, and versatility of a digital signal processing system. In this paper, novel
parallel algorithms are introduced and investigated for advanced sonar algorithm, conventional matched-field processing
(CMFP). Based on a specific domain, each paralle] algorithm decomposes the sequential workload in order to obtain scalable
parallel speedup. Depending on the processing requirement of the algorithm, the computational performance of the parallel
algorithm reveals different characteristics. The high-complexity algorithm, CMFP shows scalable parallel performance on the
array of DSP processors. The impact on parallel performance due to workload balancing, communication scheme, algorithm

complexity, processor speed, network performance, and testbed configuration is explored.

Keywords : Parallel Processing, Match-Field Processing, DSP Processor Array, Beamforming, SONAR

I. Introduction

During a long period plane-wave
beamforming algorithms have been pervasive as
techniques to find the Direction of Arrival (DOA) of
the target signal  processing.
However, under certain situations such as shallow

of time,

for underwater
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water, plane-wave the
likelihood to miss the target or produce misleading
target locations because of the mismatch problem of
the data model. The simple phased model of
plane-wave beamforming is inappropriate to describe
the underwater wave propagation. Due to the limited
of the beamforming
algorithms, Matched-Field Processing (MFP) based
on a more realistic model was introduced to enhance

the capability of sonar signal processing. In the new

beamforming  increases

performance plane-wave
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model, the waveguide nature of the ocean and
indirect paths between the target and the sensor are
considered to describe wave propagation reliably.
These advanced beamforming algorithms from a
exhibit high of
computational complexity and memory utilization.
These hurdles make implementation in real-time
sonar array systems a significant challenge. Because

complex data model levels

of the computational resources necessary to carry out
the MFP, it is appropriate to combine these signal
processing efforts with modermn data telemetry and
networking technologies. Taken together, these trends
make imperative the development and use of
advanced distributed and parallel processing
of algorithm, architecture,
network, and system design to reduce the significant

techniques in terms
processing delay of the MFP algorithms.

The MFP is a generalization of plane-wave
beamforming in which the steering vectors are
derived from the spatial point source response of the
medium. The Conventional Matched-Field Processing
(CMFP) algon'fhm was first proposed by Bucker™
and first implemented by Fizell”. To determine the
Bucker's MFP algorithm

compares the measured pressure of signals at a

location of a source,

receiver to the theoretical transmissions at the source.
By contrast, with plane-wave beamforming the image
of a point source is reconstructed on the basis of
simple time delay; such a model is inadequate in an
ocean waveguide. In ocean acoustics, the reflection of
sound at the boundaries, represented as a number of
discrete arrivals, is measured at the far field of an
acoustic source because of waveguide propagation.
In the MFP algorithm, the target location
determined by matching the measured acoustic
pressure field at the sensor outputs to a predicted

is

pressure field, which is based on an assumed source
location. The choice of a suitable acoustic propagation
model determines the predicted acoustic field at the
sensors. The objective of the propagation model is to
which  analytical model
"corresponds to the real waveguide, along with the
actual conceptual feasibility of localization of a source

examine waveguide
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in a real waveguide. The experimental possibility of
reconstructing  and
waveguide, which is described by an analytical

localizing a source in a
model, is confirmed in many papers such as®,

The CMFP algorithm requires both significant
processing power, as well as memory demands that
supercede the capabilities of most current real-time
To
computational and storage challenges of the CMFP,
efficient distributed parallel algorithms for the CMFP
need to be developed. Such parallel algorithms might

be expected to provide a feasible solution to

uniprocessor  systems. cope with the

real-time, deployable, and cost-effective beamforming
by distributing a workload over an array of
Drocessors.

To demonstrate the feasibility of the algorithms
being developed, a series of parallel experiments are
performed on an array of digital signal processors
(DSPs). The array employs efficient interprocessor
using
MPI-SHARC™ to accelerate complex collective
communication. Performance results from the array
will be provided in this paper.

Section I presents the theoretical background of
the CMFP algorithm used as a basis for this study,
and Section HI is dedicated to the explanation of two
parallel  algorithms the  CMFP.
Experimental testbeds used to analyze the parallel
algorithms are described in Section IV. Section V
then explores and examines the performance of the
parallel CMFP algorithms in terms of the speedup.
Finally, Section VI provides the brief conclusion of

communication a service known as

novel for

this paper.

II. CMFP Algorithm

The MFP localizes a source more accurately than
plane-wave methods; in particular, range and depths
can be estimated well since they incorporate the full
wave physics of the acoustics, including both signal
and noise processes, into the array processing. For
precise target localization, the propagation model
must be accurate; otherwise, the performance of the
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MFP will suffer from the significant mismatch
problems described by Baggeroer et al® The
calculation of the predicted acoustic field is far more
difficult than plane-wave beamforming due to the
more realistic propagating effect and the need for
solving the wave equation given by Equation 1

Vp(r,2) -2 plr,z) = O 70 2)
c“(r,z)

(n

r

Here, V*

represents  second-order

partial
derivatives, p(r,z) is the pressure at range r and
depth z, c(r,z) is the ocean sound speed, o is the
angular frequency of the source located at range rs
and depth z;, and &x-x,) is the delta function, also
known as the unit impulse function. The derivation
and physical translation of the wave equations are
illustrated in®, By solving the wave equation, the
acoustic pressure p(r,z) is obtained as a function of
range and depth for the steering vector of the MFP
algorithm.

The solution of the wave equation depends on the
models applied. There single
closed-form solution of the given wave equation due
to the initial conditions and the boundary conditions.

acoustic is no

In the acoustic model, we assume a certain form of
solution and wave propagation to meet the conditions.
Numerous acoustic models have been proposed to
solve the wave equation. Although one model may be
able to handle most of the situations encountered, at
least some of the cases are usually more efficiently
treated by another model. Computational pattern and
complexity are quite diverse for each model as well.

When the signal path can be modeled as a simple
waveguide, the normal-mode solution is efficient in
terms of model performance and computation. The
pressure field at any point in the waveguide can be
represented as a sum of vertical standing waves
when one source excites the waveguide. The main
limitation to the normal-mode solution is that the
solution is considered principally in the context of
However, the normal-
mode solution can be extended in various ways to
both range-dependent problems and fully three-

range-invariant conditions.
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dimensional problemsm.

The normal-mode solution
begins with the assumption that the solution of the
wave equation consists of the product of range- and
depth-dependent terms. By separation of variables,
the solution of the wave equation is provided as

follows:

kr

p(r,Z)~J—e Z‘P (z,)¥, (Z)F

m

(2)

In the equation, zs is the source depth, r is the
k.’
separation constant where k is the horizontal wave
number for the mth mode, and @,(2) is the
normal-mode depth function corresponding to Ky’
The horizontal wave number and normal-mode depth
function are calculated from the eigenvalue problem
with The

environment data alter the number of parameters and

range between source and receiver, is a

environmental — parameters. ambient
parameter values on the eigenvalue problem. The
accuracy of environment information, therefore, is
very important. Many existing methods are used for
the normal-mode solution. The most widely used
method KRAKEN, which based on a
finite-different algorithm. The popularity of KRAKEN

originates from the matrix that is set up as a

1S is

tri-diagonal matrix for which very fast eigenvalue
and eigenvector solution techniques are available.
The work herein is based on the KRAKEN model
developed by Porter and described in"” ™. Figure 1
shows the sample normal-mode intensity plot from
the Porter code™” for a wide underwater area with a
1000m-depth source. This figure clearly illustrates
the complex-wave propagation in the ocean.

The CMFP is the most fundamental form of the
MFP algorithm. Advanced techniques,
édaptive methods, can be applied in order to improve
the MFP output. The CMFP has no computational
difference with conventional beamforming[m after the

such as

steering vectors have been computed. A match is
performed by testing a set of modeled steering
vectors and comparing them to the Cross-Specral
Matrix (CSM) formed by the signal received at the
sensor array. There are generally four important
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Fig. 1. Normal-mode propagation with a source at

1000m depth'.
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Fig. 2. CMFP block diagram.

computational stages: Fast Fourier Transform (FFT),
CSM update, steering, and steering vector generation.
The FFT and CSM update stage are identical with
those of conventional beamforming algorithm. The
steering procedure estimates the field distribution
versus the sensor input. The stage is both a function
of the CSM and the steering vectors. The steering
vector generation stage uses normal-mode solution
and environmental data to solve the wave equation
for the spatial response of a source with a given
location. Figure 2 illustrates the computational flow of
the CMFP.

To summarize the previous discussion, the equation
for the CMFP algorithm is provided below.
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DF(r,z)=G(r,z)" - C-Glr,z) 3)

Here, the DF(r,z) is the detection factor (ambiguity
surface) at range r and depth z C is the CSM and
G(r,z) represents the normalized steering vectors for
a given range and depth. The output of the CMFP
produces a three-dimensional plot of detection factors
versus range and depth for . specific frequency. For
broadband processing, the multiple CMFP results are
range of
Independent steering vectors and the CSM are
required for each frequency CMFP result. The final
resulting surface is commonly referred to as the

averaged over a wide frequency.

ambiguity surface and presents the likeliness of
detection for a given data set. Peak locations on the
plot represent probable source locations. Figure 3
CMFP ambiguity surface using the
normal-mode solution for a source at a 50m depth

shows the

and 10Km range. The range/depth plane consisted of
5 to 4Km in range and 0 to 158m in depth. The
resolution used was 1Km in range and 2m in depth.
The
decomposition was 1.0Hz across a band from 200 to
231Hz. The vertical array contained 32 sensors
spaced at 4m with the top sensor at 10m depth. The
generated data do not contain any noise and no

frequency resolution used in the Fourier

uncertainty exits about the environment data.
The CMFP equation, Equation 3, is almost identical
to the conventional beamforming algorithm, except

£ %
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Fig. 3. Sample output of the CMFP for a 32-node

array.
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the steering vectors are now a function of range and
depth. The computational pattern of both algorithms
is similar. However, the required complexity and size
of the steering vectors for the CMFP are much larger
due to the complicated wave equation solution and
more resolvable coordinate of steering vectors, such
as range and depth. Therefore, the CMFP requires
more processing power and memory capacity. The
real computational problem with the CMFP is not
only requiring more computation to execute, but also
that it requires intensive computation and an
extensive amount of storage to calculate and preserve

steering vectors in the initial phase.
II. Parallel Algorithms for the CMFP

The two parallel algorithms presented in this
section make use of decomposition in two different

domains: frequency and output points.

1. Frequency Decomposition

The first decomposable space of the CMFP
algorithm is the frequency domain. The CMFP
algorithm generates multiple frequency results by
independent computation between frequency bins.
The frequency decomposition algorithm distributes
the processing load by decomposing the frequency
bins. Each node calculates the CMFP results for a
certain number of desired frequency bins from the
same sample set. The block diagram illustrating this
algorithm in operation is shown in Figure 4 for a
3-node array.

FFT

a8 4 Fus 2

Fig. 4. Frequency decomposition.
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2. Section Decomposition

The second parallel algorithm decomposes the
CMFEP using a coarse-grained approach as well. The
communication method is identical with the frequency
decomposition. The section decomposition distributes
the processing load by decomposing another domain,
Each node calculates the CMFP
results for a certain subset of output from the same

the output points.

data. Before doing so, all participating nodes must

“have a copy of the data from all other nodes. After

completing this all-to-all communication, each node
performs a given workload based on the output
points. A block diagram illustrating this algorithm in

operation on a 3—node array is shown in Figure 5.

IV. Experimental Testbed

The testbed has configuration with multiple
processing units connected by a communication
channel. As for the software, the algorithms were
implemented via message-passing parallel programs
written in C with the message—passing interface
(MPD", On the DSP array, a single iteration was
measured since this testbed provides deterministic
time measurement with no transient overhead from
an operating system.

The target testbed of this experiment consists of
10 Bittware Blacktip-EX DSP development boards ™
connected to one another in a ring topology, as
shown in Figure 6. Each board includes a single
ADSP-21062 Super HArvard ARChitecture (SHARC)
processor from Analog Devices, as well as additional
hardware for links to other nodes, off-chip memory,
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Fig. 6. Digital signal processor array.

and so forth.

The development board contains two link ports
with external connectors to enable communications
with other devices. To eliminate the need for external
routing or switching hardware, the two link ports are
dedicated to separate send and receive channels.
This configuration allows the boards to be arranged
in a uni-directional ring topology.

The network service in this DSP array was
particular
architecture by a previous research effort”. To
provide the MPI functionality on an array of DSPs,
the MPI-SHARC network service was created.
Although the MPI-SHARC is a subset of the full
specification, the functionality and syntax are
identical to the MPI found on common distributed
systems, allowing users to easily port applications
developed on other platforms to an embedded,
distributed DSP system.

implemented and optimized for this

V. Performance Analysis of Parallel CMFP
Algorithms

This section explores the performance of the
parallel CMFP algorithms on the testbed.  The
measured parameter includes execution times of
sequential and parallel algorithms. Based on the
parameter, dependent results can be derived for
scaled speedup. Investigation of
demonstrates the performance effects of the design

these results

issues.
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1. Sequential Execution Time

The first experiment involves the execution of the
sequential CMFP algorithm on a single processor,
where the number of sensors is varied to study the
effects of problem size. The results from the testbed
is shown in Figure 7. Due to the processing unit
limitation in the DSP array, the execution time
results are measured up to 8 sensor nodes on the
testbed.

2. Paraltel Execution Time

Figure 8 and Figure 9 illustrate the parallel
execution times for frequency decomposition and
section decomposition, respectively. Each execution
time measured is the effective execution time, which
represents the amount of time between successive

outputs.
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3. Scaled Speedup

Speedup descries how much faster a parallel
algorithm executes as opposed to the corresponding
sequential algorithm. The larger the speedup, the
better the quality of the algorithm.

On speedup, frequency decomposition provides
better performance than section decomposition due to
the  well-balanced
communication of DSP array. The communication is
managed well on the DSP array so the performance
dependency from the communication is subtle.
Rather, balanced workload plays an important role on
the performance on the DSP array. The DSP array
achieve a scalable performance because of the model
selection and efficient communication on the DSP

array.

workload and efficient

Frequency Decomposition

Section Decomposition
8 — e -

Number of Nodes Number of Nodes

% 10 WE 43z|E ME (Speedup)
Fig. 10. Parallel performance.

VI. Conclusions

The parallel algorithms introduced in this paper
distribute the task of CMFP in two different domains:
frequency and output points. The distinct parallel
testbed was employed to study the parallel
performance in terms of scalable speedup.

Overall, both parallel algorithms show promising
performance. For the frequency decomposition on the
DSP array, scaled speedup results achieve the
number close to the system size which is the ideal
speedup of parallel system. Similarly, the advantage
of short messages on section decomposition makes
the scaled speedup increase linearly for the given
problem size.

The parallel CMFP techniques described in this
paper present many opportunities for increased
performance, reliability, and flexibility in a distributed
parallel sonar array. Future work will involve new
avenue of research for distributed and parallel sonar
processing. The distributed and parallel techniques
developed herein can be extended to more advanced
forms of sonar signal processing such as adaptive
MFP algorithms for high fidelity information in the

mission time.
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