am
o

HIHEINOOYA 112 H28 20074 6@

A Software Process Modeling Approach for
Providing Consistency between the Process
Description and Simulation

1. Introduction

Software Process Modeling (SPM) re-
searches can be classified into software process
description, software process enactment, and
software process simulation. Most of the SPM
researches have focused on describing a soft-
ware process for understanding and communi-
cation and supporting for execution or enact~
ment of the process within Process-centered
Software Engineering Environment (PSEE) us-
ing Process Modeling Langauges (PMLs)[1-4].
On the other hand, software process simulation
modeling researches have concentrated on a
variety of management issues such as strategic
management, planning, and control{5). In gen-
eral, the process simulation model is created in-

dependently with the process description model.

% A A A& (Corresponding Author) 1 ¥t5E, F4 1A A
AT PA% 373-1 A7 & D AAET(305-701), A
3} : 042)869-5579, FAX: 042)869-8488, E-mail : seunghun@
se.kaist.ac.kr

* aitsty1ed HAln A

= §7 4¥

(E-mail : kschoid8@gmail.com)

wer P27 Aietd ag

(E-mail : bac@se kaist.ac.kr)
E =R JEHEANE 2 AnENATAFYY] e IT
TFAE §4, A9 A7 2402 FYHYL

rR o

In this context, although most of PMLs support
the consistency between process description
and enactment, there is little consideration for
the consistency between process description
and simulation. Inconsistency between the
process description and simulation forces the
process engineers to organization has a detailed
process description model.

In this paper, we propose an approach to ex~
tracting the process simulation model from the
process description model, providing the con-
sistenicy between the process models. A process
description model is created using Software
(SPEM),

which is a metamodel for defining processes

Process Engineering Metamodel
and their components as a standard for process
modeling[6]. A metamodel enables the process
description model to be transformed into the
process simulation model consistently by speci-
fying the elements of the two process models
and relationships between the elements which
should observe during transformation.

SPEM is extended to support for process
simulation. We express it as the extended
SPEM. Once a process model is described
based on the extended SPEM, the process sim-

-1 -

A Software Process Modeling Approach for Providing Consistency between the Process Description and Simulation

BZUEOCOSAR H113 H22 20074 68

ulation model can be automatically created from
the process description model. We focus on de-
riving a Software Process Simulation Model
(SPSM) from the process model described by
the extended SPEM, providing the consistency
between the process description and the process
simulation. Discrete Event System Specification
(DEVS)-based software process simulation
modeling [7] is applied in the simulation.

This approach allows process engineers to
reduce the effort for developing a software
process simulation model by extracting the
model from a software process description
model. The process models can keep the con-
sistency between the models using a trans-
formation mechanism without modification.
This approach also makes the process change
time, redesigning the organization’s process
model based on the feedback from simulation
results, to be reduced. Process engineers can
develop the process simulation model in a more
efficient and convenient way by deriving the
model from the process description model based
on the extended SPEM, concentrating on
high-level process modeling.

The structure of this paper is as follows: In
Section 2, we briefly introduce SPEM and the
DEVS formalism. Section 3 and Section 4 de-
scribe how to extend SPEM and how to extract
DEVS-based SPSM from the extended
SPEM-based model, respectively. Section 5
provides a case study for this approach.We
make a software process description model of
ISPW-6 example process with the extended
SPEM and convert it to DEVS-based SPSM.

Finally, Section 6 summarizes the main results

of this paper and gives a plan for future work.

2. Background

2.1 SPEM overivew

The SPEM, defined by Object Management
Group (OMG), is used to describe a concrete
software development process or a family of re-
lated software development processes[6).
SPEM uses an object-oriented approach to
modeling a family of related software processes
and SPEM uses UML as a notation. It's a four-
layered architecture of modeling as defined by
OMG. The SPEM specification is structured as
a UML profile, 1.e., a set of stereotypes, tags,
and constraints added to the UML standard
semantics. The SPEM is built from the SPEM
Foundation package, a subset of UML 1.4, and
the SPEM Extensions package, which adds the
constructs and semantics required for software
process modeling. At the core of SPEM is the
idea that a software development process is a
collaboration between abstract active entities,
called ProcessRoles, that perform operations,
called Activities, on concrete, tangible entities,
called WorkProducts{8].

2.2 DEVS formalism

DEVS is a general formalism for discrete
event system modeling based on the set theory
[9]. It allows representing any system by three
sets and four functions: Input Set, Output Set,

State Set, Extermal Transition Function,

2

A Software Process Modeling Approach for Providing Consistency between the Process Description and Simulation

SRYENCOHEX K112 R22 20074 68

Internal Transition Function, Output Function,
and Time Advanced function. DEVS formalism
provides the framework for information model-
ing which gives several advantages to analyze
and design complex systems: Completeness,
Verifiability, Extensibility, and Maintainability
(10].

DEVS has two kinds of models to represent
systems. One is an atomic model and the other
is a coupled model which can specify complex
systems in a hierarchical way[9]. The DEVS
mode] processes an input event based on its
state and condition, and it generates an output
event and changes its state. Finally, it sets the
time during which the model can stay in that
state. An atomic DEVS model is defined by the
following structure[9]:

M=<X,Y,S, 6 Gm, A ta>
where!

¢ X is the set of input values,

e Y is the set of output values,

e S is the set of states,

® Sy ' @ x X — S is the external transition

function,

where @ = {(s, e)ls €8, 0 < e < tuls)}

is the total state set, e is the time

elapsed since last transition
6+ S — S is the internal transition func-

tion,

A S — Y is the output function,

ta - S — I?+ is the set positive reals bet.

The behaviors represented by four functions
of the atomic model are as follows:

e An atomic model can stay only in one state

at any time

¢ The maximum time to stay in one state
without external event is determined by
ta(s) function

* When an atomic model is in a state (0 <
e < ta(s)), it changes its state by &
function if it gets an external event

e If possible remaining time in one state is
passed (e = ta(s)), it generates output by
function and changes the state by &

function

DEVS coupled model is constructed by cou-
pling DEVS models. Through the coupling, the
output events of one model are converted into
input events of other models. In DEVS theory,
the coupling of DEVS models defines new
DEVS models (i.e., DEVS is closed under cou-
pling) and then complex systems can be repre~
sented by DEVS in a hierarchical way.

3. Extending SPEM to support proc-
ess simulation

3.1 Overview of our approach

The overview of our approach is shown in

Figure 1.

The extended SPEM

Creating l

Process description modelj~

Extracting l consistent

v)

Process simulation model -

Figure 1. Overall approach

._3_

A Software Process Modeling Approach for Providing Consistency between the Process Description and Simulation

SYEDCOSYA K112 K22 20074 68

A metamodel describes the modeling ele-
ments and the rules or constraints which are al-
located to the relationships between the model-
ing elements. By allowing SPEM to contain
process modeling elements for process simu-
lation and relationships between the elements
for process description and simulation, we can
provide the consistency between process de-
scription and simulation. A process description
model is described based on the extended
SPEM. The process description model contains
the process modeling elements such as activ-
ities, workproducts, and roles for describing the
process. A process simulation model is ex—
tracted by transforming the process modeling
elements into the simulation modeling elements
of DEVS and adding quantitative relationships
among the elements. The process modeling ele—
ments are transformed into the simulation mod-
eling elements by mapping between them. The
mapping is performed for three types of ele-
ments: structural modeling elements, behavioral
modeling elements, and quantitative modeling
elements. The DEVS-based SPSM is generated
by the mapping and then we integrate quantita-
tive simulation equations and parameters into
the DEVS-based SPSM.

3.2 The extension of SPEM

In this subsection, we describe how to extend
SPEM for extracting the process simulation
model from the process description model. We
extend SPEM to provide the consistency be-

tween the process models. Figure 2 shows the

part of the extended SPEM. We extend the main
structural elements for process description
which are defined in ProcessStructure package
of the SPEM Extensions packagel6]. However,
we restrict ourselves to stay as close as possible
to standard SPEM to minimize the technical
complexity.

The elements of the process simulation model
are a process model, a simulation engine, and
quantitative data. The process model provides
the overall structure and execution sequence of
the simulation. The simulation engine executes
the process defined by the process model, ad-
vances the simulation time (e.g., activity dura-
tion), and calculates the simulation parameters
which users want to know (e.g., effort). The
process model should contain the parameters for
simulation to execute the simulation of the
process model. We, therefore, allow process en-
gineers to specify the parameters into activities.
Activity is extended by adding the parameters
such as duration, effort, and state as its
attributes. A simulation engine consumes not
roles but resources assigned to the roles. By
adding Participant to the metamodel, the simu-
lation engine can recognize a person, system, or

‘Work Definition

AN

T
~paticipant

+Shtbate

s Hinishbistn 9%
T §oprecandion. e
| bosteonditon ¢ {7
=affort

- slate

i St

“patiipan, [T a0
= Participant ey

Figure 2. Part of the extended SPEM

-4 -~

A Software Process Modeling Approach for Providing Consistency between the Process Description and Simulation

BZIHEDCNYYA K113 K28 20074 68

team that is assigned to the activities during

simulation.

4. Deriving DEVS-based SPSM
from the extended SPEM-based
process description model

4.1 Mapping the extended SPEM to
DEVS

For deriving DEVS-based SPSM from the
process description model we first map the
process description modeling elements of the
extended SPEM to DEVS to enable the DEVSim
simulation engine, which is a C++ based DEVS
simulation environment, to execute the software
process. We devise the mechanism to in-
corporate the representative process perform-
ance variables, such as duration, effort into the
derived DEVS-based SPSM. The duration of
the process is calculated by the time advance
function of the DEVS and the effort is calculated
by the resource model which is defined by the
role assignment to activities. Whenever the ac-
tivity of the process advances the time by the
time advance function, the simulation model cal-
culates the effort consumed. Undoubtedly, we
need a more detailed process simulation model
to precisely analyze the process and other proc-
ess performances, but this approach provides
process modelers with basic structure and func-
tionality of simulation program with less effort.
In the remaining part, we present the process
of the model transformation. We map the proc-
ess description modeling elements to modeling

elements of DEVS as shown in Figure 3.

The extended SPEM DEVS
<<Process>>
<<WorkDefinition>> Coupled model
Structural
Modeling <<Activity>> Atomic model
Elements <<WorkProduct>>
<<Document>> Input, output event
Behavioral State set,
Modeling State transition function,
Elements Output function
e <<Step>>
Q&nggtﬁa:we Time advance function,
g State fransttion function
Elements |

Figure 3. Mapping table of the extended
SPEM to DEVS

We extract structural modeling elements (ie.,
input, output, coupling, etc.), behavioral model-
ing elements (i.e., state transition functions,
output function), and quantitative modeling ele—
ments (i.e., time advance function) from the ex-
tended SPEM for process simulation.

The structural modeling elements include
Process, WorkDefinition, Activity, WorkProd-
uct, Document, etc. The Activity, the most basic
element for process description, describes a
piece of work performed by the ProcessRoles:
the tasks, operations, and actions that are per-
formed by a role. We map Activity to the atomic
model which is a basic modeling element in
DEVS. Process is a complete description of a
software process, which includes WorkDefini-
tions, Activities, ProcessRoles, and WorkProd-
ucts. The WorkDefinition is the work performed
in the process and can describe the Work-
Breakdown Structure (WBS)[6]. One Work-
Definition is composed of another and has
Activities as a subclass. Process and Work-

Definition are mapped to the coupled model,

-5 -

A Software Process Modeling Approach for Providing Consistency between the Process Description and Simulation

DIZUEOCORYX K11 K2 20074 68

which couples atomic models together to model
a complex system hierarchically. The Work-
Product is anything produced, consumed, or
modified by an Activity in a process. It may be
a piece of information, a document, a model, a
source code, and so on. This is mapped to a set
of input and output events which trigger the ex-
ecution of atomic models.

The behavioral modeling elements include
Steps. The Step, an atomic element of an
Activity, describes the behavior of the Activity.
We map the Step to state sets, state transition
functions, and output functions. One Activity is
decomposed into several Steps, which are map-
ped to state sets, and interacts with other
Activities by sending and receiving Work-
Product. The interactions occurred in one
Activity are mapped to state transition func-
tions and output functions, which specify how
to change its state and make outputs based on
the inputs and internal constraints.

The quantitative modeling elements are in-
corporated in the Steps. The TimeEvent of the
State Machines in UML triggers the state tran-
sition[11], which is mapped to the time advance
function. Based on the returned time from the
time advance function, the model calculates the
duration of each activity, triggers the state
transitions, and generates outputs. The equa-
tions for calculating process performance pa-
rameters derived from the historical project data
are mapped to the internal state transition

function.

4.2 Integration of quantitative informa-
tion into the DEVS-based SPSM

The mapping enables the extended SPEM-
based software process model to be run by
DEVSim simulation engine. However, we need
more detailed mapping mechanism. The im-
portant point is how to integrate quantitative
simulation equations and parameters into the
DEVS-based SPSM. The most typical per-
formance variables of the process simulation are
duration (schedule) and effort (cost). We define
the relationships between modeling elements of
the extended SPEM and DEVS to incorporate
those process performance variables.

The performance variables are computed via
state transition, which is represented in the for-
mat below[11]:

event-name (parameter-list)

[guard-condition]/action-expression

The duration of the Activity 1s modeled as

a TimeEvent using the following format[11]:
after(TimeForActivity)

The keyword after represents that when the
time since the entry to the current state is
elapsed to the amount of "TimeForActivity”, the
TimeEvent is occurred and triggers any tran-—
sition that depends on the event. We map this
into the time advance function of DEVS. The
time advance function returns the duration time
of each activity. The effort (e.g., Person-

Months) is modeled as a resource model, which

A Software Process Modeling Approach for Providing Consistency betwaen the Process Description and Simulation

SYEOCON A1 K22 20073 68

is composed of FIFO (First-In First-Out)
Queue models. The FIFO Queue model, an
atomic model, represents ProcessRole which is
assigned to Activities. The multiplicity attribute
of the Perform association between ProcesRole
and Activity represents the size of the FIFO
Queue and the connection of the association de-
fines the coupling relationships between FIFO
Queue model and the Activity. Figure 4 illus-
trates relationships between Activity and FIFO
Queue. When the Activity is being executed, it
requests the assigned ProcessRole in the
Resource model and then the FIFO Queue gen-
erates an output and reduces its size. If the
FIFO Queue is empty, the Activity can'’t proceed
and waits until the FIFO Queue is available. On
the other hand, when the Activities are sched-
uled to perform at the same time, we can assign
a priority on each of them, which is modeled
with the Precedes dependency defined in SPEM.

Other performance variables not defined here
are modeled as an attribute and operation of
WorkProduct or Document. The attribute and
operation are mapped to attribute and operation
of DEVS Message, which is used for trans-

ferring the information of one model to another.

RequestRole reque sﬂl Resource_Model
-“' ut ProcessRole_A
AflocateRole P - l reque S‘OCCSROIe_B
M » = w}/ &
2| 37
Vi

. n2
| Retvitz _Chog
O WO
- 1 Y

AlocateRole oW T omz"]"

Figure 4. Resource model for effort calculation

This enables the software engineers to have
extensibility and flexibility to implement the

quantitative simulation model.

4.3 Implementation of the translator

The implementation of the translator is rela-
tively straightforward. Most of UML tools sup-
port XMI for interchanging models in a serial-
ized form. We analyzed the exported XML files
and defined transformation rules of Extensible
Stylesheet Language Transformations (XSLT).
We extract all the necessary information dis-
cussed in this section through XSLT processing
and finally generate DEVSIm classes by
Document Object Model (DOM) processing. We
have done the analysis on the exported XMI and
defined the XML schema, and have transformed

it using Xerces[12] parser.

5. Case Study

We have performed a case study to evaluate
whether the transformation provides the con-
sistency between the process description model
and the process simulation model. We have
modeled ISPW-6 example process[13] with the
extended SPEM and transformed it to
DEVS-based SPSM. We use commercial UML
modeling tool, Enterprise Architect[14], which
supports UML Profile for SPEM, to model
ISPW-6.

We will present the process description model
based on the extended SPEM of the ISPW-6

with several UML diagrams which contain

7

A Software Process Modeling Approach for Providing Consistency between the Process Description and Simulation

BIZHEIDCOSYX A1 RI2% 2007 68

SPEM icons [6] to provide notational con-
venience. The model is transformed to the
DEVS-based SPSM, which uses the point esti-
mate data used in [15] for the values of the sim-
ulation parameters. This scenario is preplanning
of the ISPW-6 process under no resource
constraints. Finally, we will demonstrate the
transformed simulation program of the DEVS-
based SPSM.

5.1 SPEM-based software process de-
scription model of ISPW-6

The UML profile for SPEM gives benefits of
using UML diagrams to present different per-
spectives of a software process model: in par-
ticular, Class diagram, Package diagram,
Activity diagram, Use Case diagram, Sequence
diagram, and Statechart diagraml6]. We use
three UML diagrams among them: Use Case di-
and Statechart

diagram. We create two Use Case diagrams.

agram, Activity diagram,

Instead of showing them, we describe the
diagrams. A Use Case diagram describes the
decomposition of the Develop Change Test Unit
Phase into several WorkDefinitions and
Activities. At first, Develop Change Test Unit
Phase 1s decomposed into Project Magmit,
DevCode, Dev Test, Test Unit WorkDefinitions.
Each of WorkDefinitions is decomposed into
serveral Activities. For example, the Dev Test
WorkDefinition is decomposed into Modify Test
Plans Activity and Modify Unit Test Package
Activity. WorkDefinitions and Activities would
be transformed to the coupled model and the

atomic model of DEVS, respectively. For exam-
ple, the Dev Test WorkDefinition is transformed
to the coupled DEVS model which include the
atomic models of the Modify Test Plans
Activity and Modify Unit Test Package
Activity. The other Use Case diagram describes
ProcessRoles involved in the process and their
assigned Activities. This is transformed to re-
source model, which calculates the effort for the
process.

Figure 5 shows the inputs, outputs, and se-
quences of Activities and the swimlane repre-
sents ProcessRoles assigned to each Activity
for ISPW-6. This diagram gives the structural
information of the process. For example, an
atomic model, Modify Design Activity, outputs
Modified Design message, which is connected
to the Review Design atomic model. This shows
the internal coupling among atomic models and

the message transfer.

Figure b. Activity diagram for sequence of
Activities, Inputs, and Outputs

8

A Software Process Modeling Approach for Providing Consistency between the Process Description and Simulation

BIYENOONYX RI11E K28 20074 68

5.2 DEVS-based SPSM of ISPW-6

Describes overall structure of the DEVS-
based SPSM. Compared to Figure 5, the whole
Activities and WorkProducts are transformed
into each of atomic models and input/output
events of Figure 6. The ExperimentalFrame
model, which is a predefined DEVS model, plays
a role of a measurement system or observer like
an oscilloscope in electronics. It generates in-
puts, Regs Chg in this model, to trigger the
ISPW-6 process model and accepts and ana-
lyzes the simulation results.

The snapshot of the implemented simulation
program is shown in Figure 7. It is composed
of scenario input, simulation results display,
simulation analysis, and simulation control part.
The simulation results and analysis for project
management are out of the scope for this paper,
and you can referencel5]. When process en-
gineers want to change the organization’s proc—
ess with the simulation results, they change the

process description model, transform the model,

L R

Mo dtad Tost B

Ei R ST AL FPAM E

Figure 6. QOverall architecture of the DEVS-
based SPSM of the ISPW-6 process

£ 18P0 Process Shmilation

et Qimation Besulls
schad_sson Teks ' — Tatsl Effer: 57 parsorbonts

Medy_Day Progot Guratiof; | dave

SRt Rosits Angbess

My Test. Pars Gavs .)
Tt Siredus frcie
Moy, Lt Test PK 10 R R days __W_J
tetrt B pPS xBE e Efon profie |
Szt Conmat -
soamonstos | Sowswenpave | smitonkamel oo |

Figure 7. DEVSim program of ISPW-6

and simulate the transformed model iteratively.
Process engineers can easily evaluate the alter-
natives of the organization's process using

simulation.

6. Conclusion and Future Work

We proposed an approach to extracting the
process simulation model from the process de-
scription model, preserving the consistency be-
tween the process models.

We extended SPEM to provide the process
models with the consistency. We also provided
the transformation mechanism to extract a
process simulation model from a process de-
scription model and evaluated the mechanism
by demonstrating a case study.

This approach allows process engineers to
reduce the effort for developing software proc-
ess simulation. Process engineers also develop
the process simulation model more efficiently
and conveniently because the process simu-
lation model is derived from the process de-
scription model based on the extended SPEM.
This approach can contribute to a software
process improvement by reducing the feedback

time of redesigning the organization’s process

9

A Software Process Modeling Approach for Providing Consistency between the Process Description and Simulation

S HEDCOOGYR 118 M22 20074 63

model based on a simulation.

As a future work, we have a plan to apply
this method to System Dynamics simulation
area. The System Dynamics calculates the per-
formance variables continuously through feed-
back loops and has different modeling elements
compared to this approach. It would be interest-
ing to combine this approach with System
Dynamics. Also it would be interesting to ex-
plore to integrate PSEE with simulation

environment.

REFERENCE

[1] Sutton, S., Heimbigner, D. and Osterweil, L.,
“Language constructs for managing change in
process centered environments” Fourth
SIGSOFT Symposium on Software Develop-
ment Environments, Software Engineering
Notes, 1990, pp. 206-217.

[2] Kaiser, G.E., Barghouti, N.S. and Sokolsky,
MH.,, “Preliminary experience with process
modeling in the Marvel software development
environment kernel” 23d Annual Hawaii
International Conference on System Sciences,
IEEE Computer Society, Washington, DC,
1990, pp. 131-140.

[3] Finkelstein, A., Kramer, J. and Nuseibeh, B.,
Software Process Modeling and Technology,
Research Studies Press, Somerset, England,
1994.

[4] Min, S., Bae, D, “MAM nets : A Petri-net
based Approach to Software Process Model-
ing, Analysis and Management,” Proc. of Int'l
Conf of Software Engineering and Knowledge
Engineering(SEKE’97), pp. 76-87, June 1997.

[5] Kellner, M1, Madachy, R., and Raffo, D,
“Software process modeling and simulation:
Why, What, How?,” Journal of Systems and
Software, Elsevier, 1999, pp. 91-105.

[6] Software Process Engineering Metamodel
Specification, Version 1.1, OMG Document
formal/05-01-06, 2005.

[7] Choi, K., Bae, D.Kim, T. “DEVS-based
software process simulation modeling: For-
mally specified, modularized, and extensible
SPSM,” The 6th International Workshop on
Software Process Simulation and Modeling, in
conjunction with the 27th ICSE, IEEE
Computer Society Press, Washington, DC,
2005, pp. 73-82.

[8] Acuna, S.T. Juristo, N., Software Process
Modeling, Springer, 2005.

[9] Zeigler, B. Pracehofer, H., Kim, T., Theory of
Modeling and Simulation, Second Edition,
Academic Press, New York, 2000.

(10] Kim, T., DEVSImHLA v220 Developer’s
Manual, Korea Advanced Institute of Science
and Technology (KAIST), 2004.

[11] OMG Unified Modeling Language Speci-
fication, Version 1.4, 2001.

[12] Apache XML Project Web site, http.//xml
apache.org, 2005.

[13] Kellner, M.I, “Software process modeling
example problem” 6th International Software
Process Workshop, IEEE Computer Society,
Washington, DC, 1991.

[14] Enterprise Architect Web site, http.//www.
sparxsystem.com.au, Sparx Systems, Inc,
2005.

[15] Kellner, M.IL, “Software process modeling
support for management planning and control,”
First International Conference on the Software
Process, IEEE Computer Society Press,
Washington, DC, 1991, pp. 8-28.

10

A Software Process Modeling Approach for Providing Consistency between the Process Description and Simulation ~ BI=XEIDICII S| X] R 11H R22 20074 68

4 5 2 L
$2003d RISt B FE TR (F AN -1980d A& Thshm(F A
« 20039 ~ A Ft1}dtr)ed ALt ekl B3l A) » 19851 ~1987'd University of Wisconsin-Milwaukee
s BAEOF AZEYO TRAX BUY ATEYO] 2 (Fs4Ah
Mz B, AZE] ZRAx AIEHH § + 19881 ~1992'4 University of Florida (384}

« 199214 ~ 19943 University of Florida x4

+ 19959 ~ g Al #=2Fer)ed ARgH nf

c BARoL L AR A 71, FA/ME AZEYY F
g, AZESY MY WPE/ZIA2 B
d, AXVE 7|9 AZEHo] 3, AX
Edo] Z2As 5

5 3 A

<1992 §EA#Ea S8 gha(e] g}
« 199613 ~ 19984 Oregon State Univ., Dept. of EECS
(ZE4Ah
+ 20033 ~2007d = #8t7]Ed AeA(F A}
<2007 ~EA) ST 4¥
s BAEOL: AZEY o] ZZAA A EFo|M AZTE]
ZZAE U3 @8 F

11

