Relations between Polymorphism of NRAMP1 Gene and Susceptibility to Pulmonary Tuberculosis

NRAMP1 유전자 다형성과 폐결핵의 감수성과의 관계

  • Lee, Ji Seok (Department of Internal Medicine, College of Medicine, Pusan National University) ;
  • Cho, Jin Hoon (Department of Internal Medicine, College of Medicine, Pusan National University) ;
  • Kim, Ki Uk (Department of Internal Medicine, College of Medicine, Pusan National University) ;
  • Park, Hye-Kyung (Department of Internal Medicine, College of Medicine, Pusan National University) ;
  • Kim, Yun Seong (Department of Internal Medicine, College of Medicine, Pusan National University) ;
  • Lee, Ho Seok (Department of Thoracic Surgery, College of Medicine, Pusan National University) ;
  • Kim, Yeong Dae (Department of Thoracic Surgery, College of Medicine, Pusan National University) ;
  • Jeon, Doo Soo (Masan National Hospital) ;
  • Park, Seung Kyu (Masan National Hospital) ;
  • Lee, Min Ki (Department of Internal Medicine, College of Medicine, Pusan National University) ;
  • Park, Soon Kew (Department of Internal Medicine, College of Medicine, Pusan National University)
  • 이지석 (부산대학교 의과대학 내과학교실) ;
  • 조진훈 (부산대학교 의과대학 내과학교실) ;
  • 김기욱 (부산대학교 의과대학 내과학교실) ;
  • 박혜경 (부산대학교 의과대학 내과학교실) ;
  • 김윤성 (부산대학교 의과대학 내과학교실) ;
  • 이호석 (부산대학교 의과대학 흉부외과학교실) ;
  • 김영대 (부산대학교 의과대학 흉부외과학교실) ;
  • 전두수 (국립마산병원) ;
  • 박승규 (국립마산병원) ;
  • 이민기 (부산대학교 의과대학 내과학교실) ;
  • 박순규 (부산대학교 의과대학 내과학교실)
  • Received : 2007.04.20
  • Accepted : 2007.05.28
  • Published : 2007.06.30

Abstract

Background: Several lines of evidence suggest that a host's genetic factors influence the outcome of exposure to Mycobacterium tuberculosis. The aim of this study was to determine whether polymorphism in NRAMP1 (natural resistance associated macrophage protein 1) gene is associated with the susceptibility or resistance to tuberculosis infection for patients with drug-sensitive pulmonary tuberculosis (DS-TB) and multi-drug resistant pulmonary tuberculosis (MDR-TB). Methods: Eight genetic polymorphisms of the NRAMP1 gene were investigated in patients suffering with DS-TB (n=100) or MDR-TB (n=102), and in healthy normal controls (NC, n=96). The genetic polymorphisms of NRAMP1 were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results: The frequency of D543N A/G heterogygotes was significantly higher in the DS-TB subjects than the NCs (OR=2.10, 95% CI: 1.00 to 4.41, p=0.049). The frequency of 823C/T T/C heterozygotes was significantly higher in the DS-TB subjects (OR=2.79, 95% CI: 1.11 to 7.04, p=0.029) and the MDR-TB subject (OR=3.30, 95% CI 1.33 to 8.18, p=0.010) than in the NCs. However, the frequency of these genotypes was not different between the DS-TB and MDR-TB subjects. Conclusion: A significant association was found between NRAMP1 823 C/T polymorphism and pulmonary tuberculosis. This result suggests that NRAMP1 polymorphism may be involved in the development of pulmonary tuberculosis in Koreans.

연구배경: 결핵균에 노출된 후 임상적 결핵으로 발병하는데 유전적 인자가 관여할 수 있으며, 치료 반응에도 숙주의 유전적 요인이 관여할 가능성이 있다. 이에 저자들은 NRAMP1 유전자 다형성을 감수성결핵과 다제내성결핵환자로 나누어서 비교하였다. 방 법: 100명의 약제감수성군, 102명의 다제내성군, 96명의 건강대조군을 대상으로 274C/T, 469+14G/C, 577-18G/A, 823C/T, A318V, 1465-85G/A, D543N, 1729+55del4 의 NRAMP1 유전자 다형성의 빈도를 중합효소 연쇄반응기법과 중합효소 연쇄반응-제한분절길이 다형성법을 이용하여 분석하였다. 결 과: NRAMP1 유전자의 D543N 이형접합체의 빈도는 건강대조군에 비해 약제감수성군에서 높았으나(OR=2.10, 95% CI=1.00 to 4.41, p=0.049) 다제내성군에서는 차이가 없었다. 823C/T의 이형접합체의 빈도는 건강대조군에 비해 약제감수성군(OR=2.79, 95% CI=1.11 to 7.04, p=0.029)과 다제내성군 (OR=3.30, 95% CI=1.33 to 8.18, p=0.010)에서 유의하게 높았으나 약제감수성군과 다제내성군 사이에는 유의한 차이가 없었다. 결 론: NRAMP1 유전자의 823C/T 이형접합체의 빈도는 약제감수성군과 다제내성군에서 유의하게 높아, 폐결핵의 발생과 연관되는 후보유전자일 가능성이 있으며 약제감수성결과에 따른 결핵이환에는 차이를 보이지 않았다.

Keywords

References

  1. Murray JF. A century of tuberculosis, Am J Respir Crit Care Med 2004;169:1181-6 https://doi.org/10.1164/rccm.200402-140OE
  2. Murray CJ, Styblo K, Rouillon A. Thberculosis in developing countries: burden, intervention and cost. Bull Int Union Tuberc Lung Dis 1990;65:6-24
  3. Bellamy R. Genetic susceptibility to tuberculosis in human populations. Thorax 1998;53:588-93 https://doi.org/10.1136/thx.53.7.588
  4. Marquet S, Schurr E. Genetics of susceptibility to infectious diseases: tuberculosis and leprosy as examples, Drug Metab Dispos 2001;29:479-83
  5. Schurr E, Buschman E, Malo D, Gros P, Skamene E, Immunogenetics of mycobacterial infections: mouse-human homologies. J Infect Dis 1990;161:634-9 https://doi.org/10.1093/infdis/161.4.634
  6. Plant J, Glynn AA. Genetics of resistance to infection with Salmonella typhimurium in mice. J Infect Dis 1976;133:72-8 https://doi.org/10.1093/infdis/133.1.72
  7. Blackwell JM, Roach TI, Atkinson SE, Ajioka JW, Barton CH, Shaw MA. Genetic regulation of macrophage priming/activation: the Lsh gene story. Immumol Lett 1991;30:241-8 https://doi.org/10.1016/0165-2478(91)90032-6
  8. Vidal SM, Malo D, Vogan K, Skamene E, Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bog, Cell 1993;73:469-85 https://doi.org/10.1016/0092-8674(93)90135-D
  9. Cellier M, Glvoni G, vidal S, Kwan T, Groulx N, Liu J, et al. Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression. J Exp Med 1994;180:1741-52 https://doi.org/10.1084/jem.180.5.1741
  10. Liu J, Fujiwara TM, Buu NT, Sanchez FO, Cellier M, Paradis AJ, et al. Identification of polymorphism and sequence variants in the human homologue of the mouse natural resistance-associated macrophage protein gene. Am J Hum Genet 1995;56:845-53
  11. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV. Variations in the NRAMP1 gene and susceptibility to tuberculosis in west africans. N Engl J Med 1998;338:640-4 https://doi.org/10.1056/NEJM199803053381002
  12. Kim HS, Park MH, Song EY, Park H, Kwon SY, Han SK, et al. Association of HLA-DR and HLA-DQ genes with susceptibility to pulmonary tuberculosis in Koreans: preliminary evidence of associations with drug resistance, disease severity and disease recurrence. Hum Immunol 2005;66:1074-81 https://doi.org/10.1016/j.humimm.2005.08.242
  13. Rajalingam R, Mehra NK, Jain RC, Myneedu VP, Pande JN. Polymerase chain reaction-based sequence-specific oligonucleotide hybridization analysis of HLA class II antigens in pulmonary tuberculosis: relevance to chemotherapy and disease severity. J Infect Dis 1996;173:669-76 https://doi.org/10.1093/infdis/173.3.669
  14. Dubaniewicz A, Lewko B, Moszkowska G, Zamorska B, Stepinski J. Molecular subtypes of the HLA-DR antigens in pulmonary tuberculosis, Int J Infect Dis 2000;4:129-33 https://doi.org/10.1016/S1201-9712(00)90073-0
  15. Sharma SK, Turaga KK, Balamurugan A, Saha PK, Pandey RM, Jain NK, et al. Clinical and genetic risk factors for the development of multi-drug resistant tuberculosis in non-HIV infected patients at a tertiary care center in India: a case-control study. Infect Genet Evol 2003;3:183-8 https://doi.org/10.1016/S1567-1348(03)00086-8
  16. Comstock GW. Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis 1978;117: 621-4
  17. Kallmann FJ, Reisner D. Twin studies on the significance of genetic factors in tuberculosis. Am Rev Tuberc 1942;47:549-74
  18. Stead WW, Senner JW, Reddick WT, Lofgren JP. Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med 1990;322:422-7 https://doi.org/10.1056/NEJM199002153220702
  19. Rojas M, Barrera F, Pnzo G, Garcia LF. Differential induction of apoptosis by virulent Mycobacterium Tuberculosis in resistant and susceptible murine macrophage. J Immunol 1997;159:1352-61
  20. Xu DL, Goto Y, Endo F, Amoako KK, Shinjo T. The effect of Bcg gene on antigen presentation of spleen adherent cells and peritoneal macrophages from Mycobacterium bovis BCG-infected $Bcg^S\;and\;Bcg^r$ mice. Vet Mocrobiol 1997;59:67-78 https://doi.org/10.1016/S0378-1135(97)00175-2
  21. Gruenheid S, Pinner E, Desjardins M, Gros P. Natural resistance to infection with intracellular parasites: The Nrampl protein is recruited to the membrane of the phagosome. J Exp Med 1997;185 :717-30 https://doi.org/10.1084/jem.185.4.717
  22. Blackwell JM, Searle S. Genetic regulation of macrophage activation: understanding the function of NRAMP1(=Ity/Lsh/Bcg). Immun Letter 1999;65:73-80 https://doi.org/10.1016/S0165-2478(98)00127-8
  23. Govoni G, Gros P. Macrophage NRAMP1 and its role in resistance to microbial infections. Inflamm Res 1998;47:277-84 https://doi.org/10.1007/s000110050330
  24. Deretic V, Fratti RA. Mycobacterium tuberculosis phagosome. Mol Microbiol 1999;31:1603-9 https://doi.org/10.1046/j.1365-2958.1999.01279.x
  25. Shaw MA, Collins A, Peacock CS, Miller EN, Black GF, Sibthorpe D, et al. Evidence that genetic susceptibility to Mycobacterium tuberculosis in an Brazilian population is under oligogenic control: linkage study of the candidate gene NRAMP1 and TNFA. Tuber Lung Dis 1997;78:35-45 https://doi.org/10.1016/S0962-8479(97)90014-9
  26. Blackwell JM, Genetics of host resistance and susceptibility to intramacrophage pathogens: a study of multicase families of tuherculosis, leprosy and leishmaniasis in north-eastern Brazil. Int J Parasitol 1998;28:21-8 https://doi.org/10.1016/S0020-7519(97)00175-6
  27. Huang JH, Oefner PJ, Adi V, Ratnam K, Ruoss SJ, Trako E, et al. Analyses of the NRAMP1 and IFN-y R1 genes in women with Mycbacterium aviumintracellulare pulmonary disease. Am J Respir Crit Care Med 1998;157:377-81 https://doi.org/10.1164/ajrccm.157.2.9706012