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Abstract. Measurement technology plays an important role in discrete manufacturing industry. Probe-type 
coordinate measuring machines (CMMs) are normally used to capture the geometry of part features. The 
measured points are then fit to verify a specified geometry by using the least squares method (LSQ). However, 
it occasionally overestimates the tolerance zone, which leads to the rejection of some good parts. To overcome 
this drawback, minimum zone approaches defined by the ANSI Y14.5M-1994 standard have been extensively 
pursued for zone fitting in coordinate form literature for such basic features as plane, circle, cylinder and sphere. 
Meanwhile, complex features such as torus have been left to be dealt-with by the use of profile tolerance 
definition. This may be impractical when accuracy of the whole profile is desired. Hence, the true deviation 
model of torus is developed and then formulated as a minimax problem. Next, a relatively new and simple 
population based evolutionary approach, particle swarm optimization (PSO), is applied by imitating the social 
behavior of animals to find the minimum tolerance zone torusity. Simulated data with specified torusity zones 
are used to validate the deviation model. The torusity results are in close agreement with the actual torusity 
zones and also confirm the effectiveness of the proposed PSO when compared to those of the LSQ. 
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1.  INTRODUCTION 

 
Coordinate measuring machines (CMMs) are an 

extremely powerful metrological instrument. Coupled 
with the aid of computer and CMM software, they can 
automatically perform complex analysis to verify manu-
factured parts’ conformance to size and geometric toler-
ances such as form, orientation, and runout. The most 
widely used technique for form tolerances analyses in 
practice is the least squares method (LSQ) due to its 
simplicity and robustness (Traband et al., 1989; Shun-
mugam, 1987; Prakasvudhisarn et al., 2003). Also, it can 
be applied to most geometries quite easily provided that 
their respective discrepancy models are known. How-
ever, the results obtained by the LSQ do not guarantee 
the minimum zones as specified by the ANSI standard 

(ASME Y14.5M-1994, 1995). It occasionally overesti-
mates the tolerance zone. Consequently, this leads to the 
economical disadvantages of rejecting or reworking 
some good parts. Therefore, minimum zone approach 
has been pursued for zone fitting instead.  

Although all basic form tolerances such as straight-
ness, flatness, circularity, cylindricity, and sphericity 
have been defined and investigated based on minimum 
zone approach in coordinate form literature, interest-
ingly the form tolerances for torus and other complex 
shapes have been largely ignored due to the lack of their 
geometrical deviation models. They are normally left to 
be dealt-with by the use of profile tolerance definition. 
Profiles such as straight lines, arcs, and other curved 
lines may be applied and the tolerance estimations of 
these elements are verified individually. Such a proce-
dure may be impractical in case where accuracy of the 
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entire profile is a requirement. This implies that the 
common practice, the use of profile, for torus is far from 
optimal in spite of the sufficient need to inspect them in 
parts such as outer and inner races in bearings and tor-
oidal continuous variable transmission. Hence, to in-
spect doughnut-shaped feature, a set of mathematical 
models for torusity error verification consisting of the 
true deviation model and its nonlinear optimization 
counterpart is clearly desired. 

The true nonlinear deviation model of torus-shaped 
must first be developed and then used to establish the 
ideal feature of torus from actual measurements. The 
main idea of this step is similar to the procedure to ob-
tain the discrepancy model in the orthogonal least-
squares regression. Based on minimum tolerance zone 
approach, this ideal torus is determined to split the 
measured data into two parts equidistantly, inside and 
outside the assessment torus. In other words, it is uti-
lized to set up two imaginary tori, the outer and the in-
ner tori respect to the ideal, to form a tolerance zone 
torusity. This is where the minimax criterion comes into 
play. That is, the chosen ideal torus minimizes the 
maximum distance that an individual point falls from 
the ideal. Therefore, the normal discrepancy model and 
the minimax criterion are combined to verify form toler-
ance of the toroidal object. 

Besides the need for the set of mathematical mod-
els, an effective and efficient optimization technique 
should be taken into consideration to solve the formu-
lated mo-del for minimum zone torusity estimation. A 
relatively new algorithm, the particle swarm optimiza-
tion (PSO), has been introduced in the framework of an 
artificial social model. It is a population based stochastic 
optimization method that demonstrates appealing prop-
erties such as simplicity, short computer code, fast con-
vergence, consistency results, robustness, and no re-
quirement for gradient information (Kennedy and Eber-
hart, 1995). Recently, the PSO has been successfully 
applied to solve a wide range of applications (Allahverdi 
and Al-Anzi, 2006; Liu et al., 2006; Lawtrakul and 
Prakasvudhisarn, 2005; Chuanwen and Bompard, 2005; 
Elbeltagi et al., 2005). However, its application to form 
errors evaluation has not yet been fully realized. Hence, 
the PSO is selected to verify the form conformance of 
the manufactured toroidal object by optimizing the de-
veloped minimax function. 

Therefore, to effectively and efficiently inspect do-
ughnut-shaped features, this research attempts to 1) de-
termine the first true nonlinear torusity model through 
an integrative investigation of torusity definition, its 
deviation model, and its optimization formulation and 2) 
investigate an application of the PSO for torusity form 
error evaluation. 

2.  LITERATURE REVIEW 

Various techniques have been discussed for various 

form tolerances evaluation based on the minimum zone 
concept. They can be roughly classified into two catego-
ries, computational geometry approach and numerical 
approach. The former approach deals with algorithms 
and data structures (Traband et al., 1989; Hong et al., 
1991; Le and Lee, 1991; Roy and Zhang, 1992, 1994; 
Roy, 1995). The information of the problems is organ-
ized in such a way that would permit the algorithms to 
run in the most effective manner since they exploit the 
problems’ structures. However, each algorithm is limited 
to a particular form tolerance and difficultly expanded to 
cover other forms, especially when they possess totally 
different geometrical characteristics such as linearity 
nature of line or plane and nonlinearity nature of circle 
or cylinder. Some computational geometry based meth-
ods are convex hull, eigenpolygon, and Voronoi diagram. 
The latter approach consists of using linear and nonlin-
ear optimization methods such as simplex search, ge-
netic algorithms (GAs), and simulated annealing (SA) 
with the corresponding deviation model of each form 
feature (Shunmugam, 1987; Dhanish and Shunmugam, 
1991; Wang, 1992; Kanada and Suzuki, 1993; Carr and 
Ferreira, 1995a, 1995b; Lai et al., 2000; Sharma et al., 
2000; Liu et al., 2001; Hong et al., 2001; Wen and Song, 
2004). That is, the formulated optimization model re-
mains the same for every form feature since it is based 
on the same criterion for tolerance zone evaluation. For 
example, the minimax criterion is one of a few variants 
applied to every basic form with the respective discrep-
ancy model. Hence, this approach is quite flexible be-
cause it can simply be extended to cover various form 
tolerances if those forms’ deviation models are available. 
Its computational speed is rather fast even though it is 
not as computationally efficient as that of the computa-
tional geometry based approach. 

Traband et al. (1989) proposed a methodology 
based on the convex hull principle to evaluate form tol-
erances. Straightness and flatness were evaluated by 
adopting 2 dimensional (2D) and 3 dimensional (3D) 
convex hulls, respectively. Hong et al. (1991) verified 
minimum zone straightness by using the concept of 
geometrical eigen-polygon (EPG). Le and Lee (1991) 
introduced a standard called the minimum area differ-
ence (MAD) center to measure the tolerance of circular 
profile. The MAD center relied on the information of 
the farthest and nearest neighbor Voronoi diagrams and 
the convex hull concept. Roy and Zhang (1992, 1994) 
proposed a hybrid assessment technique combining 
convex hull and Voronoi diagrams for determining the 
roundness error. Roy (1995) addressed the concepts of 
the tolerance zones (TZs) and minimum zones (MZs) 
for evaluating form and positional tolerances. Minimum 
zone straightness and roundness were calculated based 
on 2D convex hull whereas flatness and cylindricity 
were estimated based on 3D convex hull.  

In the numerical approach, before the optimization 
model can be formulated, the relationship function of 
relevant form parameters must geometrically be deter-
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mined. Then, various techniques can be used to search 
the formulated function for optimal solutions of basic 
form features such as straightness, flatness, circularity, 
cylindricity, and sphericity. Shunmugam (1987) com-
pared the linear and normal deviations of form toler-
ances using the LSQ and minimum deviation methods. 
A simplex search algorithm was used in a search proce-
dure for both approaches. Dhanish and Shunmugam 
(1991) presented an algorithm based on the theory of 
discrete and linear Chebyshev approximation to evaluate 
the form errors. Wang (1992) proposed a nonlinear op-
timization method for minimum zone evaluation of 
common form features. The form errors were conceptu-
ally determined by minimizing the maximum deviation 
of the sampled points, which led to minimax problems. 
They were reformulated into nonlinearly constrained 
problems by introducing an additional variable. Some 
simple mechanisms were suggested to improve the sta-
bility of the algorithm. Other nonlinear optimization te-
chniques such as downhill simplex and repetitive brack-
eting methods were also used to evaluate flatness (Ka-
nada and Suzuki, 1993). Carr and Ferreira (1995a) de-
veloped a single verification methodology that can be 
applied to the cylindricity and straightness of median 
line problems by using a successive linear programming, 
which was an extension of their straightness and flatness 
evaluations (Carr and Ferreira, 1995b). The form toler-
ances for complex shapes such as cone and torus were 
also investigated. Prakasvudhisarn and Raman (2004) 
developed the linear and nonlinear deviation models for 
conicity and used the LSQ and the generalized reduced 
gradient algorithm to find the conicity zones. Subse-
quently, the linear deviation models of torus were pro-
posed and fitted by using the LSQ for torusity evalua-
tion (Aguirre-Cruz and Raman, 2005). 

Some heuristic techniques such as GA and SA have 
also been applied to verify form tolerances with good 
results. GAs were chosen to evaluate the cylindricity 
(Lai et al., 2000) and also other basic form tolerances 
(Sharma et al., 2000). Liu et al. (2001) proposed a hy-
brid approach between GA and geometric characteriza-
tion method for assessing tolerance specifications of 
straightness and flatness. Another hybridization of com-
putational geometry and SA was used to evaluate strai-
ghtness and flatness (Hong et al., 2001). Prakasvudhisarn 
et al. (2003) adopted an approach based on the support 
vector machine algorithm, ν support vector regression 
(ν-SVR), to estimate the minimum enclosing zones stra-
ightness and flatness. The presented algorithm attempted 
to minimize the ε-insensitive tube which was modeled 
as the tolerance zone of the inspected linear form fea-
tures. An algorithm inspired by the immune system and 
the evolutionary biology was proposed to evaluate 
sphericity error (Wen and Song, 2004). Another evolu-
tionary method, the PSO, has gained more interest due 
to its appealing performance in many applications in 
term of convergence rate, consistency results, and dif-
ferentiable requirement of the evaluation function. 

The PSO has been introduced in the framework of 
an artificial social model to evaluate continuous nonlin-
ear functions (Eberhart and Kennedy, 1995). It is based 
on a very simple concept of bird flocking, fish schooling, 
and swarming theory, exhibiting some popula-tion based 
stochastic evolutionary computation. Each particle flies 
over the solution space and adjusts its trajectory toward 
its current velocity, own experience, and swarm’s ex-
perience. To avoid local optima, randomness is also in-
corporated into the computation of a new velocity. Fur-
thermore, this philosophical framework can be imple-
mented in a few lines of computer code. The PSO has 
been applied to solve a wide range of applications. It 
was used to evolve artificial neural networks for human 
tremor analysis (Eberhart and Hu, 1999). It was ex-
panded to handle a mixed-integer nonlinear optimization 
problem for reactive power and voltage control consid-
ering voltage security assessment (Yoshida et al., 1999). 
Furthermore, the PSO was applied to solve a set of well-
known test minimax problems with promising results 
(Laskari et al., 2002). To assure the PSO’s performance, 
five evolutionary-based optimization algorithms such as 
genetic algorithm (GA), memetic algorithms (MA), par-
ticle swarm (PSO), ant-colony optimization (ACO), and 
shuffled frog leaping (SFL) were tested with both con-
tinuous and discrete optimization problems and then 
compared in terms of processing time, success rate, and 
solution quality. The results showed that the PSO algo-
rithm was the second best in terms of processing time 
while performed the best in terms of success rate and 
quality of solutions (Elbeltagi et al., 2005). 

In summary, the inspection of toroidal object has 
rarely truly been investigated due to its complexity and 
hence needs to be tackled to improve its effectiveness 
and efficiency. Therefore, the purpose of this study is to 
develop the currently nonexistent set of true nonlinear 
mathematical model for the doughnut-shaped fitting 
with minimax criterion and to apply the promising algo-
rithm like the PSO to torusity determination. 

3. TORUS FORM TOLERANCE DEFINIT-
ION AND DEVIATION 

Tolerances are the total amount from which a 
specified dimension is permitted to vary. This concept is 
applied not only to size tolerance but also to geometric 
tolerances such as location, orientation, runout, and 
form. Form tolerances are most frequently applied to 
single feature or portion of a feature. To evaluate form 
feature, an ideal feature is established from the actual 
measurements while simultaneously constructing a mi-
nimum tolerance zone within which all measurement 
values must lie. The obtained zone or the deviations of 
the feature from the ideal must be within the specified 
tolerance. In other words, form tolerances state how far 
the actual features are permitted to vary from the de-
signed nominal form. Common types of form tolerances 
such as straightness, flatness, circularity, sphericity, and 
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cylindricity are defined by the ANSI standard based on 
the minimum zone concept. For instance, cylindricity is 
the entire feature surface during one revolution in which 
all points are on equal distance from a common axis as 
shown in Figure 1. This section only presents the deriva-
tion process of the torusity deviation model. Its mini-
mum tolerance zone formulation is discussed in the sub-
sequent section. 

A torus is formed by rotating a circle, minor circle, 
about a line that is in the plane of the circle, but not in-
tersecting the circle as illustrated in Figure 2. All center 

points of all revolved circles form a common core circle, 
major circle, of torus. Torusity is then defined as the 
entire feature surface during one revolution in which all 
points are on equal distance from the center points on 
the major circle. Thus, torusity can be determined by 
calculating the normal distances between measurement 
points and surface of the assessment torus as illustrated 
in Figure 2 to Figure 5. 

In Figure 3, given that
0 0 0

( , , )
i i i

L x x y y z z= - - -  
is the vector between point 

0 0 0
( , , )O x y z  and a meas-

urement point 
i

r , hence,  
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Figure 1. Specifying cylindricity of surface elements (ASME Y14.5M-1994, 1995) 
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where ri is the coordinates of a sampled point; 

0 0 0
( , , )O x y z  is the origin of a local frame (about the cen-

ter of torus); ( , , )u v w is a normalized direction vector 
of a torus and its axes. In Figure 4, let a represent the 
normal distance from a measurement point to a center 
point of a minor circle (torus tube); c be the distance 
between center points of major and minor circles; and h 
or ( )

0i
z z-  be the linear distance along z-axis between 

a measured point and xy -plane of torus’ base. Thus, 
2 2 2

a w h= +  and w l c= - . Consequently, ( )22
a l c= -  

2
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Therefore, an error which is a normal distance from 
a measurement point ( ), ,

i i i i
r x y z  to the surface of the 

fitted ideal torus is 
0i

d a r= -  as illustrated in Figure 2 
to Figure 5. Thus, 

 

0

2
0

2

222

2
00

2
00

2
00

)(

])()[(

])()[(])()[(

r

zz

c
wvu

vzzwyy

uzzwxxuyyvxx

d

i

ii

iiii

i -

-+

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-
++

ïþ

ï
ý
ü

ïî

ï
í
ì

---+

---+---

=

  
 (5) 

where
0

r is the minor radius of the minor circle of 
the ideal torus. 

Without loss of generality, 
0

z  and w  are simpli-

fied by equating to 0 and 1, respectively. Then, the nor-
mal distance di becomes 
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The ideal torus can be established by determining 
values of these relevant parameters,

0 0
, , , ,x y u v c , and

0
r , 

of the derived deviation model above by using a crite-
rion for best fit. In this case, the minimax criterion was 
selected since it conformed to minimum tolerance zone 
approach set by the ANSI standard (ASME Y14.5M-
1994, 1995). This is a major difference why the LSQ 
which is based on a different criterion, minimization of 
the sum of the squares of the errors, tends to overesti-
mate the computed tolerance zone. 

4.  FORM TOLERANCES FORMULATION 

A form tolerance can be established by searching 
for the ideal form of the inspected feature from collected 
data points while simultaneously minimizing the maxi-
mum deviation between measurement values and the 
fitted form (Wang, 1992). As a result, the upper and 
lower limits that contain all measured points would pro-
vide a geometrical tolerance zone. To follow this crite-
rion, a minimax problem can be formulated. For in-
stance, the basis for minimum zone straightness is de-
scribed as follows: 

 
minimum zone = 2* min (max di) 

or h = min (max di)             (7) 
 

  

. ..

.

ri

d ih

h

.
.

.

.

Ideal feature

 
Figure 6. Minimum zone straightness 

 
 
where di is a normal distance from a measurement 

point to the ideal feature. Figure 6 illustrates such zone; 
where dots represent measured data points i or ri, h is a 
half width of zone, and di is the deviation of point i from 
the ideal feature. The minimax formulation would result 
in an ideal feature having equi-distance to the farthest 
data points on both sides of this ideal. The minimum 
zone obtained is then compared with the specified toler-
ance limit for conformance. The above formulation mo-
del can also be applied to cover other form features by 
using a proper deviation model for each particular form. 
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In other words, the discrepancy model derived for tor-
oidal object should be combined with this minimax cri-
terion and Equation (6) was then used as an error model, 
di, in Equation (7) for torusity verification. 

Normally, sequential quadratic programming is a 
common gradient-based approach for solving minimax 
problems. The quality of the obtained solution is very 
much dependent upon the initial solution and continuity 
of the objective function (Laskari et al., 2002). Further, 
the derivative information of the objective function is 
required analytically or approximately. Consequently, the 
gradient-based methods may experience some difficul-
ties in trying to reach acceptable zone solutions. An al-
gorithm such as PSO that does not require the gradient 
information could alleviate these shortcomings encoun-
tered by gradient-based methods. It was also reported to 
tackle minimax problems effectively on a set of well-
known test functions (Laskari et al., 2002). 

5.  PARTICLE SWARM OPTIMIZATION (PSO) 

A relatively new evolutionary computational tech-
nique called particle swarm optimization (PSO) was 
introduced by Kennedy and Eberhart (1995). It is in-
spired by the social behavior of animals such as bird 
flocking in searching for food. Each particle flies in 
hyperspace searching for the best solution by adjusting 
position and velocity based on its own flying experience 
(pbest) and its companions’ experience (gbest). The in-
ertia weight w was later introduced to reportedly im-
prove the PSO optimizer. The PSO has been applied to 
many applications such as optimization problems, neural 
network training, traveling salesman problems, and job 
scheduling. It is very attractive because requirement of 
gradient information is not needed. Hence, it is unaf-
fected by discontinuities of the objective function. The 
equations used consist of flexible and well-balanced 
mechanisms to enhance the global and local exploration 
abilities. These allow a thorough search and simultane-
ously avoid the premature convergence. In addition, 
PSO uses probabilistic rules for particle’s movements. 
Therefore, it is quite robust to local optima. Plus, it can 
be implemented easily with a few lines of computer 
code. The steps of the PSO are illustrated below (Eber-
hart and Shi, 2001): 

 
1.  Initialize a population of particles with random posi-

tions and velocities on D dimensions. 
2.  Evaluate the desired optimization function in D 

variables for each particle. 
3.  Compare evaluation with particle’s previous best 

value, pbest[i]. If current value is better than pbest[i], 
then pbest[i] = current value and pbest location, 
pbestx[i][d], is set to the current location in d-
dimensional space. 

4.  Compare evaluation with the swarm’s previous best 
value, (pbest[gbest]). If current value is better than 

(pbest[gbest]), then gbest = current particle’s array 
index. 

5.  Change velocity and position of the particle accord-
ing to the following equations, respectively: 

v[i][d] = w*v[i][d] + c1*rand()*(pbestx[i][d]  

– presentx[i][d]) + c2*rand()*(pbestx[gbest][d]  

– presentx[i][d])                           (8)  

presentx[i][d] = presentx[i][d] + v[i][d]        (9) 

6.  Loop to step 2 until a stopping criterion, a suffice-
ently good evaluation function value or a maximum 
number of iterations, is met. 

 
From Equation (8) and Equation (9), v[i][d] is a ve-

locity of the ith particle in the dth dimension; w is inertia 
weight, pbestx[i][d] and pbestx[gbest][d] represent the 
best previous position (the position giving the particle’s 
best fitness value) of the ith particle in the dth dimension 
and the best previous position (the position giving the 
swarm’s best fitness value) of the gbestth particle in the 
dth dimension, respectively. The current location of the 
ith particle in the dth dimension is represented as pre-
sentx[i][d].  

As shown in Equation (8), v[i][d] consists of three 
terms. The first term is the momentum of the particle. It 
is computed by multiplying the inertia weight with par-
ticle’s previous velocity. w is a control parameter, which 
is used to influence the current velocity from previous 
velocity. The larger weight implies a global exploration 
because the particle can fly in large area for finding a 
good region. On the contrary, the smaller weight results 
in refining the search within it. The suitable selection of 
the inertia weight should provide the balance between 
global and local search area. Therefore, the inertia 
weight should be initialized to a large value and then 
gradually decreased toward the end of the search proc-
ess (Eberhart and Shi, 1998). More detail of inertia 
weight setting is discussed in the next section. The sec-
ond term is the cognition part because the particle con-
sults with its own best experience, pbestx[i][d] – pre-
sentx[i][d]. The third term is the social part since each 
particle considers the shared swarm’s best experience, 
pbestx[gbest][d]–presentx[i][d]. c1 and c2 are the positive 
constants called “acceleration coefficients.” They indi-
cate how much the particle trusts its own and compan-
ions’ experiences. The higher the constant is, the greater 
the acceleration of the particle will be. In general, to 
balance the impact of the cognition and the social parts, 
these two parameters are set to two to give it a mean of 
one (Eberhart and Shi, 1998). rand() is a uniformly ran-
dom number generator within the (0,1) range. 

These terms, their parameters, as well as the shar-
ing information mechanism make the PSO less predict-
able and more flexible to avoid local optima, to improve 
convergence rate, and to give consistency results. The 
system tackles the objective function directly without 
the need for its gradients. This makes it more practical 
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when complex function that is difficult to obtain gradi-
ents is encountered. Moreover, the PSO is implicitly 
built for speed since only primitive mathematical opera-
tors are computed. Hence, the PSO is very attractive 
especially for tolerance zone estimation that must deal 
with complex function, di, and minimax criterion. 

6.  DATA COLLECTION 

The simulated data were used to verify the toler-
ance zone torusity so that the developed deviation model 
could be validated and the effectiveness of the PSO and 
the LSQ could be tested without concerns of measure-
ment errors such as probe orientation, probe angle ad-
justment, and probe compensation. Table 1 depicts the 
details of the five perfect tori simulated. They assuma-
bly represented the preset nominal values of tori as 
specified on engineering drawing. An arbitrarily speci-
fied error zone was then added to each generated perfect 
torus. In doing so, two imaginary tori were implemented 
to cover the perfect torus with the gap of the specified 
error. One of those two tori would lie outside and the 
other one would lie inside. The measurements were 
taken by selecting some data points from the outer tori 
and some from the inner one. Together, these taken 
samples would represent a real manufactured toroidal 
object having up and down surface around the perfect 
torus with theoretical nominal values. 

 
Table 1. Details of five perfect tori tested and the se-

lected actual zones 

 
A widely used sampling method in practice, a uni-

form sampling, was applied to collect 64 data points 
from each and every simulated torus. The assumption 
that these points accurately represented the part surface 
was held by sectioning each torus normal to its circular 
core for 16 partitions and taking 4 points from each sec-
tion. Out of these four points, two points were taken 
from the surface of the outer torus and the other 2 points 
were chosen from the surface of the inner one. Alto-
gether there would be a total of 64 sampled points for 
each torus. This controlled data collection procedure 
should ease the computation of torusity fitting so that 

the specified actual zone could be reached. 

7.  RESULTS AND ANALYSES 

To establish ideal torus from all measurement val-
ues (data points collected), four torusity-controlled fac-
tors were taken into consideration for determination of 
the normal distances between measurement points and 
surface of the ideal torus as illustrated in Figure 2 to 
Figure 5. The first one was the absolute distance be-
tween major radii of both actual and ideal surfaces. The 
second was the absolute distance between minor radii of 
both surfaces. The third was the distance between the 
center points of both tori. Finally, the last factor was the 
different angle between the direction vectors of both tori 
depicted as ( , , )p u v w  in Figure 3. Together, these fac-
tors contributed to the discrepancy model obtained. 
Hence, Equation (6) was resulted and used as an error 
model in the minimax problem formulated. The PSO 
was then applied to solve the obtained formulation 
(Equation (7) with 

i
d  from Equation (6)) for minimum 

tolerance zone torusity. It iteratively attempted to mini-
mize the desired function that was the maximum devia-
tion between data points and the searched ideal feature. 
In each iteration, every particle would search for the 
values of those six relevant parameters, 

0 0
, , , ,x y u v c , 

and
0

r , that would contribute to the deviation of each 
data point from the imaginary ideal torus. The maximum 
deviation would then be the evaluation result in Step 2 
of the PSO algorithm and was minimized by the PSO. 

The computation of the PSO normally depends on 
population size, inertia weight, maximum velocity, ma-
ximum and minimum positions and maximum number 
of iteration. The initial population size was chosen such 
that it was large enough to cover the search space within 
the iteration limit based on the trial runs and literature. 
The population size of twenty was then selected in this 
work. Inertia weight started from 0.9 and gradually de-
creased to 0.4 to balance the global and local explora-
tion based on a linear function of time (iteration). This 
also contributed to improve convergence rate (Kennedy, 
1997). Particles’ velocities on each dimension were cla-
mped to a maximum velocity, vmax, to control the explo-
ration ability of particles. If vmax is too high, the PSO 
facilitates global search, and particles may fly pass good 
solutions. However, if vmax is too small, the PSO facili-
tates local search, and particles may not explore beyond 
locally good regions (Kennedy, 1997). Thus, if v[i][d] is 
greater than vmax, then v[i][d] is equated to vmax. Similarly, 
if v[i][d] is less than -vmax, then v[i][d] is equated to -vmax. 
In this study, vmax was set at 12% of the dynamic range 
of the variable in each dimension. In case of maximum 
and minimum positions of the variables in each dimen-
sion, they were chosen to represent the suitable search 
space, which was problem dependence. The selection of 
these values could be justified by considering the in-
spected part’s relevant specification, 

0 0
, , , , ,x y u v c and 

Data  
set 

1 2 3 4 5 

      
x0 0 0 0 0 0 
y0 0 0 0 0 0 
u 0 0 0 0 0 
v 0 0 0 0 0 
c 9 15 20 30 33 
r0 1 3 4 6 7 

Actual 
zone 

0.0050 0.0062 0.0093 0.0142 0.2330 
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0
r . The real manufactured torus would vary these vari-
ables to some extent. Therefore, the settings of maxi-
mum and minimum positions of those variables should 
not deviate from the preset nominal values (on engineer-
ing drawing) too much in specifying the boundary of the 
search space because torusity verification was a geomet-
rical inspection of the manufactured part that was al-
ways made not very far from the nominal values. Thus, 
this rationale was realized and could save some compu-
tational time by the PSO. To illustrate the selection of 
these settings, Dataset 5 was used as an example. Its 
preset nominal values of 

0
x ’s, 

0
y ’s, u ’s and v ’s 

were all zeroes; c ’s and 
0

r ’s were set to 33 and 7, re-
spectively. The maximum and minimum positions of

0
x ’s, 

0
y ’s, u ’s and v ’s for all particles were then specified 

as (0.1, -0.1) whereas those of c ’s and 
0

r ’s were (33.5, 
32.5) and (7.2, 6.8), respectively. This procedure was 
also repeated with all other datasets. They should ensure 
that the search spaces were never violated and the solu-
tions obtained were always valid. The last parameter 
was the maximum iteration number, which was set at 
300 based on trial runs. Figure 7 illustrates that the PSO 
converged very fast. The zone found decreased extre-
mely quickly about 60-70 iterations. Afterward, the cur-
ve appears almost flat. This implies that the near-op-
timal zone solutions were reached quickly. The graph of 
torusity zone obtained remains flat after 200 iterations. 
Thus, the maximum iteration number of 300 was suffi-
cient. Note that the same parameters settings of the PSO 
were used for all datasets except maximum and mini-
mum positions that were changed to reflect various di-
mensions of tori tested. 

The PSO based torusity fitting algorithm and the 
LSQ were implemented in MATLAB 6.5. Every nu-
merical computation was performed on a PC with a Pen-
tium IV 2.4 GHz. The PSO and the LSQ were both 
tested with five sets of simulated data and their results 

are tabulated in Table 2. 
Clearly, the results obtained by the PSO were equal 

to the specified actual zones whereas those obtained by 
the LSQ indicated overestimations. The optimal toler-
ance zones were obtained for every dataset by the PSO 
based geometrical fitting algorithm. This shows that the 
proposed deviation model was very effective. It did not 
overestimate or underestimate the tolerance zones with 
every tested dataset. The PSO also performed very well. 
It could find the minimum zone torusity from the devel-
oped deviation model with the minimax criterion. Under 
the controlled environment, the outcomes should vali-
date and verify the deviation model presented and also 
demonstrated that the PSO was very attractive for toru-
sity verification. The LSQ method is generally used to 
find the trend of data under normal distribution condi-
tion. This assumption requirement is quite cumbersome 
to verify and may not hold in many problems. Moreover, 
even though the discrepancy function of the LSQ was 
quite sensitive to outliers, it still could not guarantee if 
the tolerance zone obtained was, in fact, minimum. This 
was obviously the case in this study as well. Conse-
quently, some good parts conforming to the specifica-
tion would be rejected or reworked. 

Generally, the gradient-based algorithms are most 
suitable for a problem with a smooth objective function 
(continuous first and second derivatives). However, 
many minimax fit models do not have smooth objective 
functions. They may suffer from numerical instabilities 
with respect to convergence because the first or second 
derivatives of the objective functions are not continuous. 
The PSO could overcome this issue fundamentally. Fur-
thermore, the global mechanism in PSO and global 
strategy used (making several runs from several initial 
solutions to avoid local optima traps) should help im-
prove the solutions obtained. In addition, specific re-
quirements on the mode of data collection for any of 
these forms were not needed. That is, the location of the 
measurements could be anywhere on the surface. This 
implies that the data points were not necessarily col-
lected at sections perpendicular to the circular core of a 
torus. They could be spread around covering the entire 
surface of inspected torus so that they would assumedly 
represent this part. The form tolerances for complex 
shapes like this are typically left to be dealt-with by the 
use of profile tolerance definition. This really is the so-
lution of two 2D problems rather than the 3D solution. 
This procedure results in significant inconsistencies and 
may be impractical in cases where accuracy of the 
whole profile is a requirement. 

The PSO theoretically may require quite a compu-
tational time when the size of dataset is quite large (in 
thousands or more). However, in discrete measurement 
where dataset is usually in tens or hundreds, the time 
taken does not have much effect. Furthermore, the PSO 
requires only primitive mathematical operators and uses 
memory array to handle variables and solutions. These 
make it very fast to determine the near-optimal torusity 

 
 Table 2. Torusity tolerance zone obtained by the PSO and 

the LSQ 

Dataset 1 2 3 4 5 

0x  -0.0174 0.0394 -0.0352 0.0093 0.0194 

0y  -0.0011 -0.0399 0.0185 -0.0054 -0.0672 

u  -0.0026 0.0012 0.0011 -0.0010 -0.0142 

v  0.0030 -0.0590 -0.0060 -0.0172 -0.0069 

c  9.0190 14.9591 20.0322 29.9963 33.0692 

0r  1.0000 3.0000 4.0000 6.0000 7.0013 

Actual  
zone 

0.0050 0.0062 0.0093 0.0142 0.2330 

PSO 0.0050 0.0062 0.0093 0.0142 0.2330 

LSQ 0.0076 0.0094 0.0139 0.0215 0.3522 
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tolerance zone. The average processing time of both 
methods for ten runs is depicted in Table 3. The time 
taken by the PSO was about 0.5 second to reach the pre-
set maximum iteration of 300 and the LSQ’s computa-
tional time was around 0.08 second. Clearly, the LSQ 
was more efficient since theoretically it was an analyti-
cal method that required only substitution of relevant 
values for the respective variables into its closed form 
solution. Even though the PSO’s execution time was 
longer, it was still considered very fast, about a half of a 
second for computing 64 collected data points. In fact, 
this time could be further saved by decreasing the preset 
maximum iteration number since the PSO could con-
verge very rapidly as shown in Figure 7. 

 

 
 

Figure 7. Convergence of PSO for Dataset 5 with the 
closer looks of decreasing torusity from 0-100 
and from 200-300 iterations 

 

Therefore, the PSO based zone estimation could ef-
fectively and efficiently solve two-sided minimax toru-
sity fitting leading to minimum tolerance zone specified 
by the ANSI standard (ASME Y14.5M-1994, 1995). 

With accuracy of torusity zones, ease of algorithm and 
programming, and fast processing time, the models and 
algorithm proposed were very attractive. 

8.  CONCLUSION 

Form tolerances inspection plays an important role 
in industry. The complex forms such as torus are nor-
mally dealt-with by the use of profiles of individual fea-
tures which may not be very accurate when combined. 
Hence, a new method for finding the minimum enclos-
ing zone of torus was proposed in this work. The pre-
sented method addressed the deviation model of torus 
and its zone estimation using the PSO under the assump-
tion that the data points collected accurately represented 
the manufactured part surface. The true nonlinear devia-
tion model of torusity was derived for the first time. The 
torusity zones obtained clearly indicate that the true 
nonlinear deviation model served its purpose very well 
and it should be used, instead of profiles or approxi-
mated linear model, for torusity verification without any 
specific requirements during data collection process. 
The PSO was next applied for determination of mini-
mum zone torusity due to its simplicity in concept and 
programming, short computer code, and no requirement 
of gradient information. Hence, it was unaffected by 
discontinuity of objective functions presented in the 
minimax problem. It also required only primitive mathe-
matical operators. Coupled with the PSO’s global me-
chanism and global strategy used, the obtained results 
showed that the PSO algorithm provided very good so-
lutions, especially when compared with those of the 
LSQ. Therefore, the PSO demonstrated much potential 
in finding minimum enclosing zone and consequently 
was very attractive for adoption in practice. 

The time taken to collect data and information ob-
tained from these data should have significant impact 
for torus inspection in terms of accuracy and cost. Ide-
ally, this verification requires information of entire fea-
ture. Normally, large sample size is preferred but the 
inspection time would also increase. Therefore, efficient 
data collection consisting of sampling strategies; sample 
size and sampling location, should be investigated to 
minimize the inspection time and hence cost while 
maintaining the high level of accuracy of torusity in-
spection. In addition, systematic parameters selection of 
the PSO for form tolerance analysis will certainly en-
hance its ease of use and should be investigated further. 

Table 3. Average computational time in seconds of both methods for ten runs 

Dataset 1 2 3 4 5 

PSO’s time 0.5439092 0.5265912 0.5149398 0.5185026 0.5439428 

LSQ’s time 0.0760935 0.0781165 0.0774667 0.0842668 0.0821641 
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