Removal of Heavy Metal Ions Using Wood Charcoal and Bark Charcoal

목탄 및 수피탄의 중금속 이온 제거

  • Jo, Tae-Su (Div. of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Lee, Oh-Kyu (Div. of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Choi, Joon-Weon (Div. of Wood Chemistry & Microbiology, Korea Forest Research Institute)
  • 조태수 (국립산림과학원 화학미생물과) ;
  • 이오규 (국립산림과학원 화학미생물과) ;
  • 최준원 (국립산림과학원 화학미생물과)
  • Received : 2007.06.01
  • Accepted : 2007.06.19
  • Published : 2007.07.25

Abstract

To evaluate the effect of carbonization temperature of charcoal on the heavy metal adsorption property, Quercus mongolica wood and Larix kaempferi bark powder (100~60 mesh) were carbonized at between 400 and $900^{\circ}C$ at intervals of $100^{\circ}C$. In the properties of carbonized materials which affect the adsorption ability, pH increased with increasing the carbonization temperature, so that the pHs of wood and bark charcoal carbonized at $900^{\circ}C$ were 10.8 and 10.4, respectively. Also, in both materials, the carbon content ratio became larger as the carbonization temperature was raised. At the same carbonization temperature, carbon content ratio of the bark charcoal tended to be greater than that of the wood charcoal. In case of iodine adsorption which indicates the adsorption property in liquid phase, the wood charcoal showed higher adsorption value than the bark charcoal. From the investigation of adsorptive elimination properties of the charcoals against 15 ppm Cd, Zn, and Cu, the higher the carbonization temperature, the greater elimination ratio was. In comparison, the wood charcoal presented higher elimination ratio than that of the bark charcoal. In the wood charcoals carbonized at higher than $500^{\circ}C$, especially, 0.2 g of the charcoal was enough to eliminated almost 100% of the heavy metal ions. Heavy metal ion elimination ratio of the charcoals depended on the kinds of adsorbates. The effectiveness of adsorbates in adsorptive elimination by the charcoals were in order of Cu > Cd > Zn. This is because the physicochemical interaction between the adsorbate and adsorbent affects their adsorption properties, it is considered that subsequent researches are needed to improve the effectiveness of heavy metal adsorption by the charcoals.

탄화온도 차이에 따른 목질 탄화물의 중금속 흡착성 변화를 알아보기 위하여, 신갈나무(Quercus mongolica) 목부와 낙엽송(Larix kaempferi) 수피분말을 $400{\sim}900^{\circ}C$에서 탄화하였다. 목질 탄화물의 pH는 재료의 종류와 관계없이 탄화온도의 증가와 함께 증가하여 $900^{\circ}C$의 목탄 및 수피탄은 각각 10.8, 10.4를 나다내었다. 또한 탄화 온도 증가와 함께 탄소함량비가 증가하고 동일 탄화온도에서 목탄에 비해 수피탄의 탄소함량비가 큰 경향을 보였다. 액상흡착력을 나타내는 요오드흡착력은 목탄이 수피탄보다 다소 큰 경향을 나타내었다. 이러한 특성을 지닌 목탄과 수피탄에 의한 15ppm의 Cd, Zn 및 Cu 중금속용액에 대한 흡착제거율을 조사한 바, 높은 탄화온도에서 제조된 목탄과 수피탄일수록 높은 중금속제거율을 나타내었으며, 탄화물 종류에 있어서는 목탄이 수피탄 보다 높은 중금속 제거율을 나타내는 경향이 있었다. 특히 목탄의 경우, $500^{\circ}C$ 이상에서 제조된 탄화물 0.2 g의 사용으로 거의 100%에 가까운 제거율을 나타내었다. 한편 흡착질 종류에 있어서의 제거성능에는 다소 차이가 있으며, 본 연구에서 사용한 탄화물의 흡착성은 Cu>Cd>Zn 순으로 높았다. 이는 목탄과 같은 흡착제와 흡착의 대상이 되는 흡착질과의 물리 화학적 상호관계가 흡착에 영향을 주기 때문으로 목탄의 흡착효율을 높이기 위해서는 이에 대한 연구가 더 필요할 것으로 생각된다.

Keywords

References

  1. 권성민, 김남훈. 2006. 목재의 탄화기구 해석(I). 목재공학 34(4):8-14
  2. 김남훈, 황원중, 권성민, 권구중, 이성재. 2006. 제조온도에 따른 목탄의 해부학적 특성. 목재공학 34(4):1-8
  3. 김병로, 이재용. 2006. 수피의 탄화이용에 관한 연구. 목재공학. 34(1):40-51
  4. 이오규, 조태수. 2006. 소나무 및 참나무 백탄의 물성과 구리(II) 이온 흡착 효과. 임산에너지 25(2):55-63
  5. 조태수, 안병준, 최돈하. 2005. 탄화온도 차이에 의한 목질탄화물의 흡착성 변화. 목재공학 33(3):45-52
  6. 조태수, 이오규, 안병준, 최준원. 2006. 국산 수종으로 탄화한 목탄의 물성 및 흡착성. 임산에너지 25(1):9-17
  7. 황병호, 윤병호, 조남석, 이종윤. 2005. 최신 목재화학. 선진문화사. p. 25
  8. Acar F. N. and Z. Eren. 2006. Removal of Cu(II) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions, Journal of Hazardous Materials B137: 909-914 https://doi.org/10.1016/j.jhazmat.2006.03.014
  9. Ajmal, M., A. H. Khan, S. Ahmad, and A. Ahmad. 1998. Role of sawdust in the removal of copper(II) from industrial wastes. Water Research 32(10): 3085-3091 https://doi.org/10.1016/S0043-1354(98)00067-0
  10. Basci, N., E. Kocadagistan, and B. Kocadagistan. 2004. Biosorption of copper(II) from aqueous solutions by wheat shell. Desalination 164(2): 135-140 https://doi.org/10.1016/S0011-9164(04)00172-9
  11. Boehm, H. P. 1994. Some aspects of the surface chemistry of carbon blacks and other carbons Carbon 32: 759-769 https://doi.org/10.1016/0008-6223(94)90031-0
  12. Boehm, H. P. 2002. Surface oxides on carbon and their analysis: a critical assessment Carbon 40:145-149 https://doi.org/10.1016/S0008-6223(01)00165-8
  13. Cay, S., A. Uyaruk, and A. Ozasik, 2004. Single and binary component adsorption of copper(II) and cadmium(II) from aqueous solutions using tea-industry waste. Separation and Purification Technology 38: 273-280 https://doi.org/10.1016/j.seppur.2003.12.003
  14. Christner, L. G. and P. L. Walker. 1993. Molecular sieve character of carbons derived from cellulosic precursors. Carbon 31: 1149-1158 https://doi.org/10.1016/0008-6223(93)90068-L
  15. Dakiky, M, M. Khamis, A. Manassra, and M. Mereh 2002. Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Advances in Environmental Research 6(4): 533-540 https://doi.org/10.1016/S1093-0191(01)00079-X
  16. Karabulut, S., A. Karabakan, A. Denizli, and Y. Yurum, 2000. Batch removal of copper(II) and zinc(II) from aqueous solutions with low-rank Turkish coals. Separation and Purification Technology 18: 177-184 https://doi.org/10.1016/S1383-5866(99)00067-2
  17. Pastor-Villegas, J., J. F. Pastor-Valle, J. C Valenzuela-Calahorro, V. Gomez-Serran, 1998. Organic chemical Structure and structural shrinkage of chars prepared from rockrose. Carbon 36: 1251-1256 https://doi.org/10.1016/S0008-6223(97)00200-5
  18. Pulido-Novicio, L., T. Hata, Y. Kurimoto, S. Doi, S. Ishihara, and Y. Imamura. 2001. Adsorption capacities and related characteristics of wood charcoals carbonized using a one-step or two-step process. J. Wood Sci. 47: 48-57 https://doi.org/10.1007/BF00776645
  19. Taylor, B. R., J. S. Goudey, and N. B. Carmichael. 1996. Toxicity of aspen wood leachate to aquatic life: Laboratory studies. Environmental Toxicology and Chemistry 15(2): 150-159 https://doi.org/10.1897/1551-5028(1996)015<0150:TOAWLT>2.3.CO;2
  20. Teker, M, M imamoglu, and O. Saltabas, 1999. Adsorption of copper and cadmium ions by activated carbon from rice hull. Turk. J. Chem. 23:185-191
  21. Vazquez, G., J. Gonzalez-Alvarez, S. Freire, M Lopez-Lorenzo, and G. Antorrena. 2002. Removal of cadmium and mercury ions from aqueous solution by sorption on treated Pinus pinaster bark: kinetics and isotherms. Bioresource Technology 82(3): 247-251 https://doi.org/10.1016/S0960-8524(01)00186-9
  22. Youssef, A. M, Th. El-Nabarawy, and S. E. Samra. Sorption properties of chemically-activated carbons. 1. Sorption of cadmium(II) ions. 2004. Colloids Surf. A 235: 153-163 https://doi.org/10.1016/j.colsurfa.2003.12.017
  23. 安郁部夫, 岩崎 訓, 岩田良美, 古南 傳, 計良善也. 1998. 木炭の製造方法と吸着特性の關係. 炭素. 185: 277-284