Evaluation of Surface Emission and Internal Movement of Water in Japanese Larch Lumber

낙엽송재 내 수분의 내부이동 및 표면방사 평가

  • Han, Yeongjung (Dept. of Forest Science, College of Agriculture and Life Science, Seoul National University) ;
  • Eom, Changdeuk (Dept. of Forest Science, College of Agriculture and Life Science, Seoul National University) ;
  • Kim, Se Jong (Dept. of Forest Science, College of Agriculture and Life Science, Seoul National University) ;
  • Kang, Wook (Dept. of Wood Science and Engineering, College of Agriculture and Life Science, Chonnam Naitonal University) ;
  • Park, Joo Saeng (Dept. of Forest Products, Korea Forest Research Institute) ;
  • Park, Moon Jae (Dept. of Forest Products, Korea Forest Research Institute) ;
  • Yeo, Hwanmyeong (Dept. of Forest Science, College of Agriculture and Life Science, Seoul National University)
  • 한연중 (서울대학교 농업생명과학대학 산림과학부) ;
  • 엄창득 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김세종 (서울대학교 농업생명과학대학 산림과학부) ;
  • 강욱 (전남대학교 농업생명과학대학 임산공학전공) ;
  • 박주생 (국립산림과학원 임산공학부) ;
  • 박문재 (국립산림과학원 임산공학부) ;
  • 여환명 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2007.05.01
  • Accepted : 2007.06.18
  • Published : 2007.07.25

Abstract

Japanese larch specimens with dimension of 2.5 (radial direction) ${\times}$ 2.5 (tangential direction) ${\times}$ 2.5 cm (longitudinal direction) were prepared to determine 3 different directional internal moisture movement coefficients and surface emission coefficients along the radial-, the tangential-, and the tangential-direction. 4 sides of each cubic specimen were wrapped with paraffin tape and rubber tape, leaving open the 2 opposite surfaces of interest, to provide one dimensional moisture movement during drying. The coefficients were determined at three different temperatures, 70, 50 and $30^{\circ}C$ and at two different relative humidities, 30 and 60%. Internal moisture movement coefficients inclusive of flow of free water and diffusion of bound water and water vapor were increased in the high temperature condition. The internal moisture movement coefficient in the longitudinal direction was about six times of those in transverse directions with radial value being 20% greater than the tangential. Surface emission coefficients were increased with temperature and decreased with surface moisture content. Using this results, moisture content (MC) profile and quantities of moisture evaporating in Japanese larch lumber could be predicted in dynamic drying situations.

목재의 방향별 내부수분이동계수와 표면방사계수를 측정하기 위하여 2.5 (방사방향) ${\times}$ 2.5 (접선방향) ${\times}$ 2.5cm (섬유방향)의 낙엽송 정육면체 시편을 제작하였다. 수분이동방향과 직교하는 단면을 제외한 나머지 4면을 파라핀테이프와 고무테이프를 이용하여 코팅한 후, 70, 50, $30^{\circ}C$의 3가지 온도조건과 30, 60%의 2가지 상대습도 조건에서 건조시키면서, 목재 내부와 표면에서의 수분이동을 평가하였다. 자유수 유동과 결합수 및 수증기의 확산에 의한 내부수분이동계수는 고온조건에서 크게 나타났으며, 섬유방향이 횡단방향에 비하여 6배, 횡단방향에서는 방사방향이 접선방향에 비하여 1.2배 정도 큰 값을 보였다. 표면방사계수는 온도가 상승하고, 표면함수율이 감소함에 따라 증가하였다. 본 연구 결과를 이용하여 비평형상태에서 낙엽송재 내 함수율 분포변화와 증발수분량을 예측할 수 있으리라 기대된다.

Keywords

References

  1. Avramidis, S. and J. F. Siau. 1987. An investigation of the external and internal resistance to moisture diffusion in wood. Wood Sci. Technol. 21:249-256
  2. Comstock, G. L. 1963. Moisture diffusion coefficient in wood as calculated from adsorption, desorption, and steady state data. Fores Prod. J. 13: 97-103
  3. Hart, C. A. 1977. Effective surface moisture content of wood during sorption. Wood Sci. 9(4):194-201
  4. McNamara, W. S. and C. A. Hart. 1971. An analysis of internal and average diffusion coefficients for unsteady-state movement of moisture in wood. Wood Sci. 4(1): 37-45
  5. Park. J. H. and W. B. Smith. Estimations of moisture profiles during wood drying using an unsteady-state diffusion model (I). Mokchae Konghak. 24(2): 36-41
  6. Siau, J. F. 1984. Transport Process in Wood. Springer-Verlag, Berlin Heidelberg. German
  7. Siau, J. F. 1995. Wood: Influence of moisture on physical properties. Dept. of Wood. Sci. and Forest Prod. Virginia Tech, VA. p. 227
  8. Skaar, C. 1954. Analysis of methods for determining the coefficient of moisture diffusion in wood. Journal of For. Prod. Res. Soc. 4: 403-410
  9. Stamm, A. J. and R. M. Nelson. 1961. Comparison between measured and theoretical drying diffusion coefficients for southern pine. Forest Prod. J. 11: 536-543
  10. Yao, J. 1966. A new approach to the study of drying diffusion coefficient of wood, Forest Prod. J. 16(6): 61-69
  11. Yeo. H. 2001. Evaluation of mass transfer in wood utilizing a colormetric technique and numerical analysis. Ph.D. thesis, SUNY-ESF, Syracuse, NY. p. 200
  12. Yeo, H. and W. B. Smith. 2005. Development of a convective mass transfer coefficient conversion method. Wood Fiber Sci. 37(1): 3-13
  13. Yokota, T. 1959. Diffusion of sorption-water through the cell wall of wood. Mokuzai Gakkaishi. 5(4): 143-149
  14. 강호양. 1991. 침엽수재 내수분이동과 확산활성화에너지. 목재공학. 19(4): 27-33. (in Korean)
  15. 이원희. 1996. 목재내의 수분확산 및 전달현상에 관한 실험적 검증. 목재공학. 24(1): 75-80. (in Korean)