Investigation of Carbonization Mechanism of Wood (II)

목재의 탄화기구 해석(II)

  • Kwon, Sung-Min (College of Forest Sciences, Kangwon National University) ;
  • Kim, Nam-Hun (College of Forest Sciences, Kangwon National University)
  • 권성민 (강원대학교 산림과학대학) ;
  • 김남훈 (강원대학교 산림과학대학)
  • Received : 2007.01.31
  • Accepted : 2007.02.27
  • Published : 2007.05.25

Abstract

The anatomical characteristics of Quercus variabilis woods carbonized at 310 to $350^{\circ}C$ were examined with an optical and scanning electron microscopy, and an X-ray diffraction analysis. Dimensional change and weight loss were also investigated. Volume of wood samples decreased with increasing the carbonization temperature, and checks were developed along with radial direction. Vessel diameter in tangential direction showed higher shrinkage than that in radial direction. Weight loss of samples increased with increasing carbonization temperature. Especially, the weight loss rapidly increased at the temperature ranging from 330 to $340^{\circ}C$. SEM study presented that the cell walls of samples carbonized at below $320^{\circ}C$ showed the layering structure. However, it was revealed that the layering structure was disappeared at $330^{\circ}C$ and over and showed an amorphous-like structure without cell wall layering. Interestingly, the existence of cellulose crystalline substance at $340^{\circ}C$ was confirmed by X-ray diffraction analysis and it was not detected at $350^{\circ}C$. Consequently, it is considered that the critical temperature for carbonization of wood was around $350^{\circ}C$.

굴참나무 목재를 $310{\sim}350^{\circ}C$의 온도조건에서 탄화하여 탄화목재의 해부학적 특성, 중량감소율 및 체적변화를 조사하였다. 그 결과, 시료의 부피는 탄화온도가 높아질수록 감소하였고, 방사 방향으로 할렬이 발생하였다. 중량감소율은 탄화온도가 높아질수록 증가하였으며, 특히 탄화온도 $330{\sim}340^{\circ}C$에서 급격한 중량감소율을 보여주었다. 도관직경의 수축은 접선방향이 방사방향보다 높게 나타났다. SEM관찰에서 탄화온도가 $320^{\circ}C$ 이하의 경우, 목재 세포벽의 벽층구조를 확인할 수 있었지만, $330^{\circ}C$ 이상에서는 세포벽층이 매끄러운 비결정성 형태를 보여주었다. X선회절 결과, 탄화온도 $340^{\circ}C$까지는 목재 셀룰로오스의 결정구조가 남아있었으나, $350^{\circ}C$ 이상에서는 비결정성 구조로 변화된 것이 관찰되었다. 따라서, 목재성분이 탄소로 변화하는 탄화온도는 $350^{\circ}C$ 부근으로 생각되었다.

Keywords

References

  1. 권구중, 황원중, 박형수, 이성재, 김병로, 김남훈. 2001. 전통식 탄화로에서 제탄된 목탄의 특성(I). 2001학술 발표논문집. 한국목재공학회. pp. 309-314
  2. 권성민, 김남훈. 2006. 목재의 탄화기구 해석(I). 목재공학 34(3): 8-14
  3. 김병로, 공석우. 1999. 미이용 목질폐잔재의 탄화이용 개발(I)-수종의 간벌재 탄화와 탄화물의 특성-. 목재공학 27(2): 70-77
  4. 김병로, 이재용. 2006. 수피의 탄화이용에 관한 연구. 목재공학 34(1): 40-51
  5. 이화형 外 4人.1992. 목재물리 및 역학, 향문사. 82-102
  6. 한규성, 김병로. 2006. 목질펠릿으로 제조한 탄화물의 특성. 목재공학 34(3): 15-21
  7. 日本木材學會編, 2004, 木材の科學と利用技術-5. 木質 系材料の炭素化による新展開VIII. 日本木材學會. 1-5
  8. Angeles, G. 2001. New techniques for the anatomical study of charcoalfied wood. lAWA J. 22(3): 245-254
  9. Beall, F, C., P. R. Blankenhorn and G. R. Moore. 1974. Carbonized wood-physical properties and uses as an SEM preparation. Wood Science 6: 212-219
  10. Byrne C. E. and D. C. Nagle. 1997a. Carbonization of wood for advanced materials applications. Carbon. 35(2): 259-266 https://doi.org/10.1016/S0008-6223(96)00136-4
  11. Byrne C. E. and D. C. Nagle. 1997b. Carbonized wood monoliths-Characterization. Carbon. 35(2): 267-273 https://doi.org/10.1016/S0008-6223(96)00135-2
  12. Cutter, B. E., B. G. Cumbie and E. A. McGinnes,Jr. 1980. SEM and shrinkage analyses of southern pine wood following pyrolysis. Wood Sci Technol. 14: 115-130 https://doi.org/10.1007/BF00584041
  13. Ercin, D. and T. Yuda, 2003. Carbonization of Fir (Abies bornmulleriana) wood in an open pyrolysis system at 50-300${\circ}C$ Journal of Analytical and Applied Pyrolysis. 67: 11-22 https://doi.org/10.1016/S0165-2370(02)00011-6
  14. Heinrich, H. J. and Kaesche-krischer, B. 1962. Sponeous ignition of wood. Brennstoff-Chemi. 43: 142-148
  15. Kim, N. H. and R. B. Hanna. 2004. Anatomical characteristics of Quercus uariabilies charcoal prapared at different temperatures. 2004춘계학술발표논문집. 한국목재공학회. pp. 230-234
  16. Kim, N. H. and R. B. Hanna. 2006. Morphological characteristics of Quercus oariabilis charcoal prepared at different temperatures. Wood Sci Technol. 40(5): 392-401 https://doi.org/10.1007/s00226-005-0062-5
  17. Kumar, M., R. C. Gupta and T. Sharma. 1992. Effect of carbonization conditions on the yield and chemical composition of Acacia and Eucalyptus wood chars. Biomass and Bioenergy. 3(16): 411-417 https://doi.org/10.1016/0961-9534(92)90037-Q
  18. Kumar, M. and R. C. Gupta. 1995. Scanning electron microscopic study of acacia and eucalyptus wood chars. Journal of Materials Science.30: 544-551 https://doi.org/10.1007/BF00354423
  19. Katyal, S., K. Thambimuthu and M. Valix. 2003. Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics. Renewable Energy 28: 713-725 https://doi.org/10.1016/S0960-1481(02)00112-X
  20. Nishimiya, K., T. Hata, Y. Imamura and S. Ishihara. 1998. Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy. J. Wood Sci. 44: 56-61 https://doi.org/10.1007/BF00521875
  21. Prior, J. and P. Gasson. 1993. Anatomical changes on charring six African hardwoods. IAWA J. 14(1): 77-86 https://doi.org/10.1163/22941932-90000579
  22. Prior, J. and K. L. Alvin. 1983. Structure changes on charring of dichrostashys and salix from southern Africa. lAWA J. 4(4): 197-206
  23. Slocum, D. H., E. A. McGinnes and Jr., F. C. Beall. 1978. Charcoal Yield, Shrinkage, and Density Changes During Carbonization of Oak and Hickory Woods. Wood Science. 11(1): 42-47
  24. Shafizadeh, F. and Ncginnis, G. D. 1971. Chemical composition thermal analysis of cotten wood. Carbohydrate res. 16: 273-267 https://doi.org/10.1016/S0008-6215(00)81161-1
  25. Strezov V., Moghtaderi B. and J. A. Lucas, 2003. Thermal study of decomposition of selected biomass samples, Jounal of Thermal analysis and Calorimetry 72: 1041-1048 https://doi.org/10.1023/A:1025003306775
  26. Treusch, O., A. Hofenauer, F. Trager, J. Fromm and G. Wegener. 2004. Basic properties of specific wood-based materials carbonised in a nitrogen atmosphere. Wood Sci Technol. 38: 323-333