Production of Mn-Dependent Peroxidase from Bjerkandera fumosa and Its Enzyme Characterization

  • 투고 : 2006.09.27
  • 심사 : 2006.12.06
  • 발행 : 2007.03.25

초록

Manganese dependent peroxidase (MnP) is the most ubiquitous enzyme produced by white-rot fungi, MnP is known to be involved in lignin degradation, biobleaching and oxidation of hazardous organopollutants. Bjerkandera fumosa is a nitrogen-unregulated white-rot fungus, which produces high amounts of MnP in the excess of N-nutrients due to increased biomass yield. The objective of this study was to optimize the MnP production in N-sufficient cultures by varying different physiological factors such as Mn concentration, culture pH, and incubation temperature. The growth of fungus was optimal in pH 4.5 at $30^{\circ}C$, $N_2$-unregulated white-rot fungus produces high amounts of MnP in the excess N-nutrients. The fungus produced the highest level of MnP (up to $1000U/{\ell}$) with $0.25g/{\ell}$ asparagine and $1g/{\ell}$ $NH_4Cl$ as N source at 1.5 mM $MnCl_2$ concentration, pH value of 4.5 at $30^{\circ}C$. Purification of MnP revealed the existence of two isoforms: MnPl and MnP2. The molecular masses of the purified MnPl and MnP2 were in the same range of 42~45 kDa. These isoforms of B. fumosa strictly require Mn to oxidize phenolic substrates. Concerned to kinetic constants of B. fumosa MnPs, B. fumosa has similar Km value and Vmax compared to the other white-rot fungi.

키워드

참고문헌

  1. Bao, W., Y. Fukushima, K. A. Jr. Jensen, M. A Moen, and K. E. Hamme!. 1994. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett. 354: 297-300 https://doi.org/10.1016/0014-5793(94)01146-X
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Camarero, S., S. Sarkar, F. J. Ruiz-Duefias, M. J. Martinez, and A T. Martinez. 1999. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J. Biol. Chem. 2: 10324-10330
  4. Conesa, A., P. J. Punt, and C. A. van den Hondel. 2002. Fungal peroxidases: molecular aspects and applications. J. Biotechnol. 93(2): 143-158 https://doi.org/10.1016/S0168-1656(01)00394-7
  5. de la Rubia, T., A. Linares, J. Perez, J. Munoz-Dorado, J. Romera, and J. Martinez. 2002. Characterization of manganese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete flavido-alba. Res. Microbiol. 153: 547-554 https://doi.org/10.1016/S0923-2508(02)01357-8
  6. Dosoretz, C. G., H. C. Chen, and H. E. Grethlein. 1990a. Effect of Environmental Conditions on Extracellular Protease Activity in Lignolytic Cultures of Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56(2): 395-400
  7. Dosoretz, C. G., S. B. Dass, C. A. Reddy, and H. E. Grethlein. 1990b. Protease-mediated degradation of lignin peroxidase in liquid cultures of Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56: 3429-3434
  8. Dzedzyulya, E. I. and E. G. Becker, 2000. Mn-peroxidase from Bjerkandera adusta 90-41. Purification and substrate specificity. Biochem. (Mosc). 65(6): 707-712
  9. Eriksson, K.-E. L., R. A. Blanchette, and P. Ander. 1990. Microbial and enzymatic degradation of wood components, Springer-Verlag, Berlin
  10. Forrester, I. T., A. C. Grabski, R. R. Burgess, and G. F. Leatham. 1988. Manganese, Mn-dependent peroxidases, and the biodegradation of lignin. Biochem. Biophys. Res. Commun. 157: 992-999 https://doi.org/10.1016/S0006-291X(88)80972-0
  11. Galliano, H., G. Gas, J. L. Seris, and A. M. Boudet. 1991. Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and laccase. Enzyme Microb. Technol. 13: 478-482 https://doi.org/10.1016/0141-0229(91)90005-U
  12. Giardina, P., G. Palmieri, B. Fontanella, V. Rivieccio, and G. Sannia. 2000. Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust. Arch. Biochem. Biophys. 376(1): 171-179 https://doi.org/10.1006/abbi.1999.1691
  13. Hatakka, A 1994. Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol. Rev. 13: 125-135 https://doi.org/10.1111/j.1574-6976.1994.tb00039.x
  14. Heinfling, A., M. J. Martinez, A. T. Martinez, M. Bergbauer, and U. Szewzyk. 1998a. Purification and characterization of peroxidases from the dyedecolorizing fungus Bjerkandera adusta. FEMS Microbiol. Lett. 165(1): 43-50 https://doi.org/10.1111/j.1574-6968.1998.tb13125.x
  15. Heinfling, A., M. J. Martinez, A. T. Martinez, M. Bergbauer, and U. Szewczyk. 1998b. Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl. Environ. Microbiol. 64(8): 2788-2793
  16. Heinfling, A., F. J. Ruiz-Duefias, M. J. Martinez, M. Bergbauer, U. Szewzyk, and A. T. Martinez. 1998c. A study on reducing substrates of manganese- oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett. 428: 141-146 https://doi.org/10.1016/S0014-5793(98)00512-2
  17. Hofrichter, M., T Vares, M. Kalsi, S. Galkin, K. Scheibner, W. Fritsche, and A. Hatakka. 1999a. Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid-state fermentation of wheat straw with the white-rot fungus Nematoloma frowardii. Appl. Environ. Microbiol. 65(5): 1864-1870
  18. Hofrichter, M., T. Vares, K. Scheibner, S. Galkin, J. Sipil, and A Hatakka. 1999b. Mineralization and solubilization of synthetic lignin (dehydrogenation polymerizate) by manganese peroxidases from Nematoloma frowardii and Phlebia radiata. J. Biotechnol. 67: 217-228 https://doi.org/10.1016/S0168-1656(98)00180-1
  19. Jimenez-Tobon, G. A., M. J. Penninckx, and R. Lejeune. 1997. The relationship between pellet size and production of Mn(H) peroxidase by Phanerochaete chrysosporium in submerged culture. Enzyme Microbiol. Technol. 21: 537-542 https://doi.org/10.1016/S0141-0229(97)00065-3
  20. Kirk, T. K. and R. L. Farrell, 1987. Enzymatic 'combustion': the microbial degradation of lignin. Annu. Rev. Microbiol. 41: 465-506 https://doi.org/10.1146/annurev.mi.41.100187.002341
  21. Kirk, T. K., S. Crean, M. Tien, E. Murtagh, and R. L. Farell. 1986. Production of multiple ligninases by Phanerochaete chrysosporium: Effect of selected growth conditions and use of a mutant strain. Enzyme Microb. Technol. 8: 27-32 https://doi.org/10.1016/0141-0229(86)90006-2
  22. Kirk, T. K., E. Schultz, W. J. Connors, L. F. Lorenz, and J. G. Zeikus. 1978. Influence of culture parameters of lignin metabolism by Phanerochaete chrysosporium. Arch. Microbiol. 117: 277-285 https://doi.org/10.1007/BF00738547
  23. Leonowicz, A and K. Grzywnowicz. 1981. Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme Microb. Technol. 3: 55- 58 https://doi.org/10.1016/0141-0229(81)90036-3
  24. Leonowicz, A., Nam-Seok Cho, J. Luterek, A. Wilkolazka, M. Wojtas-Wasilewska, A. Matuszewska, M. Hofrichter, D. Wesenberg, and J. Rogalski. 2001. Fungal laccase: properties and activity on lignin. J. Basic Microbiol. 41(3-4): 185-227 https://doi.org/10.1002/1521-4028(200105)41:2<85::AID-JOBM85>3.0.CO;2-R
  25. Martinez, A. T. 2002. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb. Technol. 30: 425-444 https://doi.org/10.1016/S0141-0229(01)00521-X
  26. Martinez, M. J., F. J., Ruiz-Duenas, F. Guillen, and A. T. Martinez. 1996. Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur. J. Biochem. 237: 424-432 https://doi.org/10.1111/j.1432-1033.1996.0424k.x
  27. Masahiro Samejima and Karl-Erik L. Eriksson. 1991. Mechanisms of redox interactions between lignin peroxidase and cellobiose: Quinone oxidoreductase. FEBS Lett. 292(1-2): 151-153 https://doi.org/10.1016/0014-5793(91)80819-O
  28. Mester, T. and J. A Field. 1998. Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J. BioI. Chem. 273: 15412-15417 https://doi.org/10.1074/jbc.273.25.15412
  29. Mester, T., M. Pena, and J. A. Field. 1996. Nutrient regulation of extracellular peroxidases in the white rot fungus, Bjerkandera sp. strain BOS55. Appl. Microbiol. Biotechnol. 44: 778-784
  30. Moreira, M. T., R. Sierra-Alvarez, J. M. Lema, G. Feijoo, and J. A Field. 2001. Oxidation of lignin in eucalyptus kraft pulp by manganese peroxidase from Bjerkandera sp. strain BOS55. Bioresour. Technol. 78(1): 71-79 https://doi.org/10.1016/S0960-8524(00)00161-9
  31. Moreira, P. R., C. Dueaz, D. Dehareng, A. Antunes, E. Almeida-Vara, J. M. Frere, F. Xavier Malcata, and J. C. Duarte. 2005. Molecular characterisation of a versatile peroxidase from a Bjerkandera strain. J. Biotechnol. 118: 339-352 https://doi.org/10.1016/j.jbiotec.2005.05.014
  32. Muheim, A., M. S. A. Leisola, and H. E. Schoemaker. 1990a. Aryl-alcohol oxidase and lignin peroxidase from the white-rot fungus Bjerkandera adusta. J. Biotechnol. 13: 159-167 https://doi.org/10.1016/0168-1656(90)90101-G
  33. Muheim, A., R. Waldner, M. S. A. Leisola, and A. Fiechter. 1990b. An extracellular aryl-alcohol oxidase from the white-rot fungus Bjerkandera adusta. Enzyme Microb. Technol. 12: 204-209 https://doi.org/10.1016/0141-0229(90)90039-S
  34. Ortiz de Montellano, P. R. 1992. Catalytic sites of hemoprotein peroxidases. Annu. Rev. Pharmacol. Toxicol. 32: 89-107 https://doi.org/10.1146/annurev.pa.32.040192.000513
  35. Pogni, R., M. C. Baratto, S. Giansanti, C. Teutloff, J. Verdin, B. Valderrama, F. Lendzian, W. Lubitz, R. Vazquez-Duhalt, and R. Basosi. 2005. Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry 44: 4267-4274 https://doi.org/10.1021/bi047474l
  36. Ruiz-Duefias, F. J., M. J. Martinez, and A. T. Martinez. 1999. Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol. Microbiol. 31: 223-236 https://doi.org/10.1046/j.1365-2958.1999.01164.x
  37. Ruiz-Duefias, F. J., S. Camarero, M. Perez-Boada, M. J. Martinez, and A. T. Martinez. 2001. A new versatile peroxidase from Pleurotus. Biochem. Soc. Trans. 29: 116-122 https://doi.org/10.1042/BST0290116
  38. Sarkar, S., A. T. Martinez, and M. J. Martinez. 1997. Biochemical and molecular characterization of a manganese peroxidase isoenzyme from Pleurotus ostreatus. Biochim. Biophys. Acta 1339 (1): 23-30 https://doi.org/10.1016/S0167-4838(96)00201-4
  39. Shimada, M. and T. Higuchi. 1991. In: Wood and Cellulosic Chemistry (Hon, D. N.-S. and Shiraiski, N., Eds.) pp. 557-619, Marcel Dekker, New York, NY
  40. Steffen, K. T., A. Hatakka, and M. Hofrichter. 2002. Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl. Microbiol. Biotechnol. 60(1-2): 212-217 https://doi.org/10.1007/s00253-002-1101-x
  41. Steffen, K. T., A. Hatakka, and M. Hofrichter. 2003. Degradation of benzo a pyrene by the litter-decomposing basidiomycete Stropharia coronilla:role of manganese peroxidase. Appl, Environ, Microbiol. 69(7): 3957-3964 https://doi.org/10.1128/AEM.69.7.3957-3964.2003
  42. Vares, T., M. Kalsi, and A. Hatakka. 1995. Lignin peroxidases, manganese peroxidases, and other ligninolytic enzvmes produced by Phlebia radiaia during solid-state fermentation of wheat straw. Appl. Environ. Microbiol. 61: 3515-3520
  43. Wariishi, H., K. Valli, and M. H. Gold. 1991. In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 176: 269-275 https://doi.org/10.1016/0006-291X(91)90919-X
  44. Wariishi, H., K. Valli, and M. H. Gold. 1992. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J. BioI. Chem. 267: 23688-23695
  45. Youngs, H. L., M. Sundaramoorthy, and M. H. Gold. 2000. Effect of cadmium on manganese peroxidase Competitive inhibition of Mn-II oxidation and thermal stabilization of the enzyme. Eur. J. Biochem. 267(6): 1761-1769 https://doi.org/10.1046/j.1432-1327.2000.01173.x
  46. Young, R. A. and M. Akhtar. 1998. Environmentally-friendly technologies for the pulp and paper industry, John Wiley and Sons, New York
  47. Ziegenhagen, D. and M. Hofrichter. 2000. A simple and rapid method to gain high amounts of manganese peroxidase with immobilized mycelium of the agaric white-rot fungus Clitocybula dusenii. Appl. Microbiol. Biotechnol. 53: 553-557 https://doi.org/10.1007/s002530051656