Cell Wall Structure of Various Tropical Plant Waste Fibers

  • Abdul Khalil, H.P.S. (School of Industrial Technology, Universiti Sains Malaysia) ;
  • Siti Alwani, M. (School of Industrial Technology, Universiti Sains Malaysia) ;
  • Mohd Omar, A.K. (School of Industrial Technology, Universiti Sains Malaysia)
  • 투고 : 2006.08.25
  • 심사 : 2006.11.23
  • 발행 : 2007.03.25

초록

A comparative study of the structure and organization of the primary and secondary walls in different types of tropical plant waste fibers was carried out using transmission electron microscopy (TEM). The thickness of each layer was also measured using Image Analyzer. TEM micrographs haveconfirmed that cell wall structure of all six types of tropical plant waste fibers (empty fruit bunch, oil palm frond, oil palm trunk, coir, banana stem and pineapple leaf) has the same ultrastructure with wood fibre. The fibers consisted of middle lamella, primary and thick secondary wall with different thickness for different types of fibers. The secondary wall was differentiated into a $S_1$ layer, a unique multi-lamellae $S_2$ layer, and $S_3$ layer.

키워드

참고문헌

  1. Bai S. L., R. K. Y. Li, L. C. M Wu, H. M. Zheng, and Y. W. Mai. 1998. Tensile failure mechanisms of sisal fibers in composites. Journal of Materials Science Letters. 17(21): 1805-1807 https://doi.org/10.1023/A:1006661704908
  2. Balashov V., R. D. Preston, G. W. Ripley, and L. C. Spark. 1956. Structure and mechanical properties of vegetable fibres. I. The influence of strain on the orientation of cellulose microfibrils in sisals leaf fibre. Proc. Roy. Soc. B. 146: 460-468
  3. Blanchette, A. R., T. Nilsson, G. F. Daneil, and A. Abad. 1990. Biological degradation of wood. In: Advances in Chemistry Series. Archaeological Wood: Properties, Chemistry and Preservation (ed. by R. M. Rowell and R. J. Barbour.). pp. 141-174. Washington D. C
  4. Booker, R. E. and J. Sell. 1998. The nanostructure of the cell wall of softwoods and its functions in a living tree. Holz-als-Roh-Und Werk-stoff 56: 1-8 https://doi.org/10.1007/s001070050255
  5. Cordeiro, N., M. N. Belgacem, I. C. Torres, and J. C. V. P. Moura. 2004. Chemical compositition and pulping of banana pseudo-stem. Industrial Crops and Products 19: 147-154 https://doi.org/10.1016/j.indcrop.2003.09.001
  6. Dickison, W. 2000. Integrative plant anatomy, New York, Harcourt Academic Press
  7. Donaldson, L. A. 1992. Lignin distribution during latewood formation in Pinus radiata D. Don. IAWA Bull. 13: 381-387 https://doi.org/10.1163/22941932-90001291
  8. Donaldson L. A. 1996. Determination of lignin distribution in agricultural fibres. Wood Processing Division, New Zealand Forest Research Institute. 4418: 1-25
  9. Eames, A. J. and L. H. MacDaniels. 1974. An Introduction to Plant Anatomy. New York, MacGraw Hill Book Company
  10. Fengel D. and X. Shao. 1984. A chemical and ultrastructural study of the bamboo species Phyllostachys makinoi Hay. Wood Sci. Technol. 18: 103-112 https://doi.org/10.1021/es00122a600
  11. Grunwald, C., K. Ruel, and U. Schmitt. 2002. Differentiation of xylem cells in rolC transgenic aspen trees: a study of secondary cell wall development. Ann. For. Sci. 59: 679-685 https://doi.org/10.1051/forest:2002056
  12. Harada, H. 1964. Ultrastructure and organization of gymnosperm cell walls. In: Proceedings of the Advanced Science Seminar Pinebrook Conference Center (ed. by W. A. Cote). pp. 215-234. Syracuse University Press, New York
  13. John, V. M., M. A. Cincotto, C. Sjostrom, V. Agopyan, and C. T. A. Oliveira. 2005. Durability of slag mortar reinforced with coconut fibre. Cement & Concrete Composites 27: 565-574 https://doi.org/10.1016/j.cemconcomp.2004.09.007
  14. Koch, G. and G. Kleist. 2001. Application of scanning UV micro spectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55: 563-567 https://doi.org/10.1515/HF.2001.091
  15. Mansor H. and A. R. Ahmad. 1991. Chemical composition of the oil palm trunk. Proc. Seminar Oil Palm Trunk & Other Palmwood Utilization, PORIM, Kuala Lumpur, pp. 335-342
  16. McNeil M., A. G. Darvill, S. C. Fry, and P. Albershiem. 1984. Structure and function of the primary cell walls of plants. Ann. Rev. Plant Physiol. 53: 625-663
  17. Mishra, S., A. K. Mohanty, L. T. Drzal, M. Misra, and G. Hinrichsen. 2004. A review on pineapple leaf fibers, sisal fibers and their biocom-posites, Macromol. Mater. Eng., 289: 955-974 https://doi.org/10.1002/mame.200400132
  18. MOA (Ministry of Agriculture) Hectareage of Industrial Crops by Types, Malaysia. 2006. Online. Accessed on 18 January 2006. Available on website: http://www.doa.gov.my/doa/main.php?Content=articles&ArticleID=5
  19. Morvan, C., C. Andeme-Onzighi, R. Girault, D. S. Himmelsbach, A. Driouich, and D. F. Akin. 2003. Building flax fibres: More than one brick in the walls. Plant Physiology and Biochemistry 41: 935-944 https://doi.org/10.1016/j.plaphy.2003.07.001
  20. Sjostrom, E. 1993. Wood chemistry, fundamentals and applications. New York, Academic Press
  21. Singh, A., G. Daniel, and T. Nilsson. 2002. High variability in the thickness of the $S_3$ layer in Pinus radiata tracheids. Holzforchung 56: 111-116 https://doi.org/10.1515/HF.2002.019