The Use of AFLP Markers for Cultivar Identification in Hydrangea macrophylla

  • Lee, Jae Ho (Landscape and Ecology Division, Nature and Ecology Research Department, National Institute of Environmental Research) ;
  • Hyun, Jung Oh (Department of Forest Sciences, Seoul National University)
  • Received : 2005.07.27
  • Accepted : 2006.12.07
  • Published : 2007.06.30

Abstract

The principal morphological characters used for identification of hydrangea cultivars are often dependent on agroclimatic conditions. Furthermore, information on the selection or the genetic background of the hydrangea breeding is so rare that a molecular marker system for cultivar identification is needed. Amplified fragment length polymorphism (AFLP) markers were employed for fingerprinting Hydrangea macrophylla cultivars and candidate cultivars of H. macrophylla selected in Korea. One AFLP primer combination was sufficient to distinguish 17 H. macrophylla cultivars and 4 candidate cultivars. The profile of 19 loci that can minimize the error of amplification peak detection was constructed. AFLP markers were efficient for identification, estimation of genetic distances between cultivars, and cultivar discrimination. Based on the observed AFLP markers, genetic relationship was reconstructed by the UPGMA method. Seventeen H. macrophylla cultivars and H. macrophylla for. normalis formed a major cluster, and candidate cultivars selected in Korea formed another cluster.

Keywords

References

  1. Beismann, H., J.H.A. Barker, A. Karp and T. Speck. 1997. AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Molecular Ecology 6: 989-993 https://doi.org/10.1046/j.1365-294X.1997.00273.x
  2. Bertrand, H. 1992. Identification of Hydrangea macrophylla Ser. Cultivars. Acta Horticulturae 320: 209-212
  3. Bourgoin-Greneche, M., S. S. Fouilloux, J. Lallemand and H. Bertrand. 1995. Genetic diversity of Hydrangea macrophylla, potential of RAPD markers for varietal identification. Plant Genome IV Conference, San Diego, CA, United States 14-18 January 1995
  4. Chowdhury, M.A., B. Vandenberg and T. Warkentin. 2002. Cultivar identification and genetic relationship among selected breeding lines and cultivars in chickpea (Cicer arietinum L.). Euphytica 127: 317-325 https://doi.org/10.1023/A:1020366819075
  5. de Proft, M., N. van Stallen and N. Veerle. 2003. Breeding and cultivar identification of Cichorium intybus L. var. foliosum Hegi. In: T. van Hintum, A. Lebeda, D. Pink and J. Schuts eds. Eucarpia LeafY Vegetables 2003. Proceedings of the Eucarpia meeting on leafY vegetables genetics and breeding, Noordwijkerhout, The Netherlands 19-21 March 2003. Wageningen: Centre for Genetic Resources, The Netherlands (CGN): 83-90
  6. Forkmann, G. 1991. Flavonoids as flower pigments: The formation of the natural spectrum and its extension by genetic engineering. Plant Breed. 106: 1-26 https://doi.org/10.1111/j.1439-0523.1991.tb00474.x
  7. Kashkush, K., F. Jinggui, E. Tomer, J. Hillel and U. Lavi. 2001. Cultivar identification and genetic map of mango (Mangifera indica). Euphytica 122: 129-136 https://doi.org/10.1023/A:1012646331258
  8. Kurata, S. 1976. Illustrated Important Forest Trees of Japan, Volume 5. Chikyu-syuppan Co. Ltd, Tokyo. (in Japanese)
  9. Maughan, P.J., M.A. Saghai Maroof, G.R. Buss and GM. Huestis. 1996. Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance and near-isogenic line analysis. Theor. Appl. Genet. 93: 392-401 https://doi.org/10.1007/BF00223181
  10. Mortreau, E., H. Bertrand, C. Lambert and J. Lallemand. 2003. Collection of Hydrangea: genetic resources characterisation. ISHS Acta Horticulturae 623: 231-238. Available from http://www.actahort.org/books/623/623_ 25.htrn
  11. Mueller, U.G and L.L. Wolfenbarger. 1999. AFLP genotyping and fingerprinting. Trends in Ecology and Evolution 14: 389-394 https://doi.org/10.1016/S0169-5347(99)01659-6
  12. Nei, M. and W.H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269-5273
  13. Ortiz, R., S. Madsen and S.B. Andersen. 1998. Diversity in Nordic spring wheat cultivars (1901-93). Acta Agric. Scand. Sect. B Soil and Plant Science 48: 229238
  14. Palacios, C., S. Kresovich and F. Gonzalez-Candelas. 1999. A population genetic study of the endangered plant species Limonium dufourii (Plumbaginaceae) based on amplified fragment length polymorphism (AFLP). Molecular Ecology 8: 645-657 https://doi.org/10.1046/j.1365-294X.1999.t01-1-00597.x
  15. Sneath, P.H.A. and R.R. Sokal. 1973. Numerical Taxonomy. Freeman, San Fransisco, CA
  16. Soller, M. and J.S. Beckmann. 1983. Genetic polymorphism in varietal identification and genetic improvement. Theor. Appl. Genet. 67: 25-33 https://doi.org/10.1007/BF00303917
  17. Van de Peer, Y. and R. De Wachter. 1994. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Applic. Biosci. 10: 569-570
  18. van der Voort, J.N.A.M.R., P. van Zandvoort, H.J. van Eck, R.T. Folkertsma, R.C.B. Hutten, J. Draaistra, F.J. Gommers, E. Jacobsen, J. Helder, J. Bakker. 1997. Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol. Gen. Genet. 255: 438-477 https://doi.org/10.1007/s004380050516
  19. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Homes, A. Frijters, J. Pot, J. Peleman, M. Kuiper and M. Zabeau. 1995. AFLP: a new technique for DNA fmgerprinting. Nucleic Acids Research. 23: 4407-4414 https://doi.org/10.1093/nar/23.21.4407