DOI QR코드

DOI QR Code

Natural Background Level Analysis of Heavy Metal Concentration in Korean Coastal Sediments

한국 연안 퇴적물 내 중금속 원소의 자연적 배경농도 연구

  • 임동일 (한국해양연구원 남해연구소) ;
  • 최진용 (군산대학교 자연과학대학 해양학과) ;
  • 정회수 (한국해양연구원 한중해양과학공동연구센터) ;
  • 최현우 (한국해양연구원 해양자료정보실) ;
  • 김영옥 (한국해양연구원 남해연구소)
  • Published : 2007.12.30

Abstract

This paper presents an attempt to determine natural background levels of heavy metals which could be used for assessing heavy metal contamination. For this study, a large archive dataset of heavy metal concentration (Cu, Cr, Ni, Pb, Zn) for more than 900 surface sediment samples from various Korean coastal environments was newly compiled. These data were normalized for aluminum (grain-size normalizer) concentration to isolate natural factors from anthropogenic ones. The normalization was based on the hypothesis that heavy metal concentrations vary consistently with the concentration of aluminum, unless these metals are of anthropogenic origin. So, the samples (outliers) suspected of receivingany anthropogenic input were removed from regression to ascertain the "background" relationship between the metals and aluminum. Identification of these outliers was tested using a model of predicted limits at 95%. The process of testing for normality (Kolmogorov-Smirnov Test) and selection of outliers was iterated until a normal distribution was achieved. On the basis of the linear regression analysis of the large archive (please check) dataset, background levels, which are applicable to heavy metal assessment of Korean coastal sediments, were successfully developed for Cu, Cr, Ni, Zn. As an example, we tested the applicability of this baseline level for metal pollution assessment of Masan Bay sediments.

Keywords

References

  1. 강석범. 2001. 한반도 서남해안에 분포하는 퇴적물들의 지화 학적인 특성과 환경오염에 대한 연구. 이학박사 학위논문, 전남대학교. 121 p
  2. 김경태, 김은수, 조성록, 정경호, 박준건. 2005. 시화호 환경 중의 중금속 분포 특성과 오염. 한국해양환경공학회지, 8, 148-157
  3. 서만석. 1995. 금강하구 연안해역에 분포하는 표층퇴적물의 지화학적 및 광물학적 연구. 이학박사 학위논문, 조선대학교. 250 p
  4. 엄인권, 임동일, 이미경, 전수경, 정회수. 2003. 한국 동해안 영일만 표층 퇴적물의 금속 함량과 공간 변화 특성. 한국지구과학회지, 24, 477-490
  5. 이종현, 이정석, 김범수, 이창복, 고철환. 1998. 경기만 퇴적물의 중금속 분포 특성. 한국해양학회지 바다, 3, 103-111
  6. 조영길, 1994, 한반도 주변해역 퇴적물 중 금속원소의 분포 와 기원에 관한 연구. 이학박사 학위논문, 서울대학교. 262 p
  7. 조영길, 김주용. 1998. 영산강 하상퇴적물의 중금속 함량. 한국환경과학회지, 7, 281-290
  8. 조영길, 박경양. 1998. 영산강 하구 표층 퇴적물의 중금속 함량 및 분포. 한국환경과학회지, 7, 549-557
  9. 조영길, 류상옥, 구영경, 김주용. 2001. 새만금 조간대 표층퇴적물의 성분원소 함량과 지화학적 특성. 한국해양학회지 바다, 6, 27-34
  10. 현상민, 천종화, 이희일. 1999. 시화호의 퇴적환경과 중금속 오염. 한국해양학회지 바다, 4, 198-207
  11. 현상민, 이태희, 최진성, 최동림, 우한준. 2003. 광양만 및 여수해만 표층퇴적물의 지화학적 특성과 중금속 오염. 한국해양학회지 바다, 8, 380-391
  12. 한국해양연구원. 1999. 진해-마산만 수지환경 관리모델 개발 (II). 395 p
  13. 한국해양연구원. 2006. 남해 특별관리해역의 환경위해성평가 연구 (1) 마산연안 중심연구. 592 p
  14. Aloupi, M. and M. Angelidis. 2001. Normalization to lithium for the assessment of metal contamination in coastal sediments cores from the Aegean Sea, Greece. Mar. Environ. Res., 52, 1-12 https://doi.org/10.1016/S0141-1136(00)00255-5
  15. Gibbs, R.J. 1993. Metals of the bottom muds in Townsville harbour, Australia. Environ. Pollut., 81, 297-300 https://doi.org/10.1016/0269-7491(93)90212-7
  16. Grousset, F., C. Quetel, B. Thomas, O. Donard, C. Lambert, F. Guillard, and A. Monaco. 1995. Anthropogenic vs. lithogenic origins of trace elements (As, Cd, Pb, Rb, Sb, Sc Sn, Zn) in water column particles: Northwestern Mediterranean Sea. Mar. Chem., 48, 291-310 https://doi.org/10.1016/0304-4203(94)00056-J
  17. Hanson, P., D. Evans, D. Colby, and V. Zdanowics. 1993. Assessment of elemental contamination in estuarine and coastal environments based on geochemical and statistical modeling of sediments. Mar. Environ. Res., 36, 237-266 https://doi.org/10.1016/0141-1136(93)90091-D
  18. Hilton, J., W. Davison, and U. Ochsenbein. 1985. A mathematical model for analysis of sediment core data: Implications for enrichment factor calculations and tracemetal transport mechanism. Chem. Geol., 48, 281-291 https://doi.org/10.1016/0009-2541(85)90053-1
  19. Kersten, M. and F. Smedes. 2002. Normalization procedures for sediment contaminants in spatial and temporal monitoring. J. Environ. Monit., 4, 109-115 https://doi.org/10.1039/b108102k
  20. Lim, D.I., H.S. Jung, J.Y. Choi, S. Yang, and K.S. Ahn. 2006. Geochemical compositions of river and shelf sediments in the Yellow Sea: Grain-size normalization and sediment provenance. Cont. Shelf Res., 26, 15-24 https://doi.org/10.1016/j.csr.2005.10.001
  21. Louma, S. 1990. Processes affecting metal concentrations in estuarine and coastal marine sediments. p. 51-66. In: Heavy metals in the marine environment. ed. by R.W. Furness and P.S. Rainbow. CRC Press, Boca Raton, FL
  22. Loring, D. and R. Rantala. 1992. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manage., 19, 81-97 https://doi.org/10.1007/BF02472006
  23. Marin, B. 1997. Reproducibility testing of a sequential extraction scheme for the determination of trace metal speciation in a marine reference sediment by inductively coupled plasma-mass spectrometry. Anal. Chim. Acta., 342, 305-318 https://doi.org/10.1016/S0003-2670(96)00580-6
  24. Murray, K. 1996. Statistical comparison of heavy-metal concentrations in river sediments. Environ. Geol., 27, 54-58 https://doi.org/10.1007/BF00770602
  25. NOAA. 1991. The potential for biological effects of sedimentsorbed contaminants tested in the national status and trends program. NOAA Technical Memorandum., NOS OMA 52
  26. Oh, J.K. 1997. Depositional Environment and Distribution of Heavy Metal off the Shihwa Dam. J. Korean Soc. Oceanogr., 32, 120-127
  27. Ranasinghe, P.N., R.L.R. Chandrajith, C.B. Dissanayake, and M.S. Rupasinghe. 2002. Importance of grain size factor in distribution of trace elements in stream sediments of tropical high grade terrains-a case study from Sri Lanka. Chem. Erde., 62, 243-253 https://doi.org/10.1078/0009-2819-00015
  28. Roussiez, V., W. Ludwig, J.L. Probst, and A. Monaco. 2005. Background levels of heavy metals in surficial sediments of the Gulf of Lions (NW Mediterranean): An approach based on $^{133}Cs$ normalization and lead isotope measurements. Environ. Pollut., 138, 167-177 https://doi.org/10.1016/j.envpol.2005.02.004
  29. Schropp, S., G. Lewis, H. Windom, J. Ryann, F. Caldner, and L. Burney. 1990. Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries, 13, 227-235 https://doi.org/10.2307/1351913
  30. Schiff, K. and S. Weisberg. 1999. Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Mar. Environ. Res., 48, 161-176 https://doi.org/10.1016/S0141-1136(99)00033-1
  31. Summers, J.K., T.L. Wade, V.D. Engle, and Z.A. Malaeb. 1996. Normalization of metal concentration in estuarine sediments from the Gulf of Mexico. Estuaries, 19, 581-594 https://doi.org/10.2307/1352519
  32. Szefer, P., G.P. Glasby, J. Pempkowiak, and R. Kaliszan. 1995. Extraction studies of heavy-metal pollutants in surficial sediments from the southern Baltic Sea off Poland. Chem. Geol., 120, 111-126 https://doi.org/10.1016/0009-2541(94)00103-F
  33. Turekian, K.K. and K.H. Wedepohl. 1961. Distribution of the elements in some major units of the earth's crust. Bull. Geol. Soc. Am., 72, 175-192 https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
  34. Ujevic, I., N. Odzak, and A. Baric. 2000. Trace metal accumulation in different grain size fractions of the sediments from a semi-enclosed bay heavily contaminated by urban and industrial waste waters. Water Res., 34, 3055-3061 https://doi.org/10.1016/S0043-1354(99)00376-0
  35. Zhang, C., L. Wang, G. Li, S. Dong, J. Yang, and X. Wang. 2002. Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China. Appl. Geochem., 17, 59-68 https://doi.org/10.1016/S0883-2927(01)00079-8

Cited by

  1. Toxic effects on bioaccumulation and hematological parameters of juvenile rockfish Sebastes schlegelii exposed to dietary lead (Pb) and ascorbic acid vol.176, 2017, https://doi.org/10.1016/j.chemosphere.2017.02.097
  2. Tracing the origin of Pb using stable Pb isotopes in surface sediments along the Korean Yellow Sea coast vol.52, pp.2, 2017, https://doi.org/10.1007/s12601-017-0020-9
  3. The Environmental Characteristics and Factors on the Cultured manila clam (Ruditapes philippinarum) at Hwangdo and Jeongsanpo of Taean in the West coast of Korea vol.30, pp.2, 2014, https://doi.org/10.9710/kjm.2014.30.2.117
  4. The Geochemical Characteristics and Environmental Factors on the Marine Shellfish Farm in Namhae-po Tidal Flat of Taean vol.29, pp.1, 2013, https://doi.org/10.9710/kjm.2013.29.1.51
  5. Assessment of Persistent Organic and Heavy Metal Contamination in Busan Coast: Application of Sediment Quality Index vol.38, pp.3, 2016, https://doi.org/10.4217/OPR.2016.38.3.171
  6. Improvements in the Environmental Impact Assessment on Seawater and Sediment Qualities for Coastal Dredging Projects vol.19, pp.2, 2013, https://doi.org/10.7837/kosomes.2013.19.2.119
  7. Oxidative stress, neurotoxicity, and metallothionein (MT) gene expression in juvenile rock fish Sebastes schlegelii under the different levels of dietary chromium (Cr6+) exposure vol.125, 2016, https://doi.org/10.1016/j.ecoenv.2015.12.001
  8. Contents of Inorganic Elements in Shellfish and Geochemical Characteristics of Surface sediments on the West Coast of Korea vol.28, pp.3, 2012, https://doi.org/10.9710/kjm.2012.28.3.225
  9. Heavy Metal Contamination in Surface Sediments from Masan and Jinhae Bay, Southeast Coast of Korea vol.15, pp.4, 2012, https://doi.org/10.7846/JKOSMEE.2012.15.4.302
  10. Pollution and Ecological Risk Assessment of Trace Metals in Surface Sediments of the Ulsan-Onsan Coast vol.18, pp.4, 2015, https://doi.org/10.7846/JKOSMEE.2015.18.4.245
  11. Evaluation of Organic Matter and Trace Metal Contaminations of Intertidal Sediments from Coastal Islands in the Southern Region of Jeollanam Province vol.46, pp.5, 2013, https://doi.org/10.5657/KFAS.2013.0626
  12. Estimation of Pollution Degree of Surface Sediment from Incheon H Wharf vol.20, pp.5, 2014, https://doi.org/10.7837/kosomes.2014.20.5.504
  13. Monitoring of trace metals in coastal sediments around Korean Peninsula vol.102, pp.1, 2016, https://doi.org/10.1016/j.marpolbul.2015.09.045
  14. Antioxidant Responses, Neurotoxicity, and Metallothionein Gene Expression in Juvenile Korean Rockfish Sebastes schlegelii under Dietary Lead Exposure vol.29, pp.2, 2017, https://doi.org/10.1080/08997659.2017.1307286
  15. The toxic effects on the stress and immune responses in juvenile rockfish, Sebastes schlegelii exposed to hexavalent chromium vol.43, 2016, https://doi.org/10.1016/j.etap.2016.03.008
  16. Effects of sub-chronic exposure to lead (Pb) and ascorbic acid in juvenile rockfish: Antioxidant responses, MT gene expression, and neurotransmitters vol.171, 2017, https://doi.org/10.1016/j.chemosphere.2016.12.094
  17. Heavy Metals in Surface Sediments from Doam Bay, Southwestern Coast of Korea vol.20, pp.4, 2015, https://doi.org/10.7850/jkso.2015.20.4.159
  18. Distribution of Organic Matter and Trace Metals in Surface Sediments and Ecological Risk Assessment in the Tongyeong Coast vol.21, pp.4, 2016, https://doi.org/10.7850/jkso.2016.21.4.125
  19. Trace metals in Chun-su Bay sediments vol.16, pp.4, 2011, https://doi.org/10.7850/jkso.2011.16.4.169
  20. Correlation of Heavy Metal Concentrations between Total Digestion and Aqua Regia Digestion for Sediments from Yeongsan and Seomjin Watersheds vol.33, pp.1, 2011, https://doi.org/10.4491/KSEE.2011.33.1.032
  21. Development of Microbe Carrier for Bioremediation of Zn, As by using Desulfovibrio Desulfuricans and Zeolite in Artificial Sea Water vol.30, pp.3, 2015, https://doi.org/10.7841/ksbbj.2015.30.3.114
  22. Assessment of heavy metal contamination in sediments along the coast of South Korea using Cs-normalized background concentrations vol.117, pp.1-2, 2017, https://doi.org/10.1016/j.marpolbul.2017.02.019
  23. Determination of sediment metal background concentrations and enrichment in marine environments – A critical review vol.580, 2017, https://doi.org/10.1016/j.scitotenv.2016.12.028
  24. Regional background concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea vol.482-483, 2014, https://doi.org/10.1016/j.scitotenv.2014.02.068
  25. Effect on Serum Parameters and Immune Responses of Carassius auratus gibelio Exposed to Dietary Lead and Bacillus subtilis pp.1559-0720, 2018, https://doi.org/10.1007/s12011-018-1544-2
  26. Toxic Effects and Depuration on the Antioxidant and Neurotransmitter Responses after Dietary Lead Exposure in Starry Flounder pp.08997659, 2018, https://doi.org/10.1002/aah.10033
  27. Study of Bioaccumulation, Hematological Parameters, and Antioxidant Responses of Carassius auratus gibelio Exposed to Dietary Lead and Bacillus subtilis pp.1559-0720, 2018, https://doi.org/10.1007/s12011-018-1447-2