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Abstract. This paper presents estimations of the generalized Rayleigh
distribution model based on grouped and censored data. The maximum
likelihood method is used to derive point and asymptotic confidence es-
timates of the unknown parameters. The results obtained in this paper
generalize some of those available in the literature. Finally, we test
whether the current model fits a set of real data better than other mod-
els.
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1. INTRODUCTION

The problem of estimating the unknown parameters in statistical distributions
used to study a certain phenomenon is one of the important problems facing con-
stantly those who are interested in applied statistics. This paper considers the
estimations of the unknown parameters of the generalized Rayleigh distribution.
This distribution is an important distribution in statistics and operations research.
It is applied in several areas such as health, agriculture, biology, and other sciences.
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There are several types of data that arise in every day life. Among these, there
are simple data, grouped data, truncated data, censored data, progressively censored
data, and so on.

The exponential distribution is one of the most frequently used distribution in
reliability theory and applications. This is because it has simple mathematical ex-
pressions. The mean and its confidence limit for this distribution have been esti-
mated based on grouped and censored data by Seo and Yum (1993) and Chen and
Mi (1996), respectively. Nevertheless, the exponential distribution does not always
fit well a given set of real data. The reason is that it has a constant failure rate.
Abuammoh and Sarhan (2007) used grouped and censored data to estimate the pa-
rameters of the generalized exponential distribution. They found that it fits a set of
real data better than the exponential distribution.

Other distributions have been used in reliability theory. Some were taken from
the twelve different forms of distributions introduced by Burr (1942) to model data.
Among those different distributions, Burr-Type X and Burr-Type XII received the
most attention. There is a thorough analysis of Burr-Type XII distribution in Ro-
driguez (1977). see also Wingo (1993) for a nice account of it.

The two-parameter (scale and shape) Burr-Type X distribution is also called
generalized Rayleigh distribution. Several aspects of the one-parameter (scale pa-
rameter equals one) generalized Rayleigh distribution were studied by Sartawi and
Abu-Salih (1991), Jaheen (1995, 1996), Ahmad et al. (1997), Raqab (1998) and
Surles and Padgett (1998). Recently Surles and Padgett (2001) observed that the
two-parameter generalized Rayleigh distribution can be used quite effectively in
modeling strength and general lifetime data. Kundu and Raqab (2005) used dif-
ferent methods to estimate the parameters of the generalized Rayleigh on simple
data.

Our aim in this paper is to estimate the unknown parameters of the generalized
Rayleigh distribution based on grouped and censored data. The maximum likelihood
method is used to derive point and asymptotic confidence estimates of the unknown
parameters. The results obtained in this paper generalize some of those available
in the literature. Finally, we test whether the current model fits a set of real data
better than other models.

The rest of the paper is organized as follows. In Section 2, we present the
definition and some characteristics of the generalized Rayleigh distribution. Point
and interval estimations of the unknown parameters are discussed in Section 3. In
Section 4 an illustrative example is presented to explain how the generalized Rayleigh
distribution fits a set of real data better than other distributions. A conclusion is
drawn in Section 5.
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2. THE DISTRIBUTION

Let T be a random variable with scale parameter a > 0 and shape parameter
3 > 0. Setting 6 = («, 3), the cumulative distribution function of T is given by

F(t;0) = (1- e“ﬁtz)a, t>0.

The distribution of T is the so-called generalized Rayleigh distribution. Its survival
function is given by

5(t:6) =1~ (1 ~e ) iz, (2.1)
while the probability density function {pdf) is given by
a—1
f(t:6) =2apte™™ (1-e7#*)" >0, (2.2)

Figure 2.1 shows the variations of the pdf for 8 = 1 and o = 0.25 (left) and a =1
(right).
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Figure 2.1. Probability density function of the generalized Rayleigh distribution.

In fact it was shown by Ragab and Kundu (2006) that the pdf of a generalized
Rayleigh distribution is a decreasing function for @ < 0.5 and it is a right-skewed
unimodal function for @ > 0.5. The hazard rate function is given by

2afte At (1 - e—*’”z)%1

h(t;8) = 1- (1- ew-[it?)a )

t>0. (2.3)

Figure 2.2 shows the variations of the hazard rate function for 3 = 1 and a = 0.25
(left) and a = 1 (right).
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Figure 2.2. Hazard rate function of the generalized Rayleigh distribution.

It was also shown by Ragab and Kundu (2006) that the hazard rate function of a
generalized Rayleigh distribution is bathtub type for o < 0.5 and it is an increas-
ing function for @ > 0.5. The mean time to failure of the generalized Rayleigh
distribution is given by

1 [ o P B |
MTTF=§\/~;§( z. )(_1)“2 3 (2.4)

3. PARAMETERS ESTIMATION

Consider n independent and identical components put on test. Assume that the
lifetimes of these components follow the generalized Rayleigh distribution expressed
in the previous section. Let t = (#;,--,tx), where t; < .-+ < {fj, denote the
predetermined inspection times with f; representing the completion time of the
test. Also, let top = 0 and tg4; = 0. For i = 1,---,k, denote by n; the number of
failures recorded in the time interval (¢;-1,%;] and by ng.; the number of censored
units, that is units that have not failed by the end of test.

3.1 Maximum Likelihood Estimators Using the data described above, the
likelihood function is given by

k
L(t;8) = C [[ [P{ti-1 < T < t:}J™ [P{T > ty}]™*' | (3.1)

j=]
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where C = —}—%}—7 is a constant with respect to the parameters o and 3. Since,
=1 gl

P{ti_l <T< ti} = F(ti) - F(ti_l) R
and
P{T > tg} =1~ F(tg),
therefore, (3.1) can be written as

k
L(t;0) = C [S@e)™* [ [S(ti-1) - S(t)™. (3.2)

i=1
Substituting from (2.1) into (3.2), one gets

Lit;0) =C[1- (1~ e 20) ™" ﬁ (1) (1-e0))" . (33)

ie=]

Hence, the log likelihood function is given by

L(t;0) =InC+ngyrln [1 - (1 —~ e’ﬁti)a]+§: n;ln Kl — e’m?)a — (1 - e‘ﬁtf-l)a] .
=1

(3.4)
We let
0, 1=0,
AiB) =4 1—eP i=1,--- k,
1, i=k+1,
and note, for future use, that
dAi(B) _ o0 —m2
SN 42 : =1, -,k
28 tie y 1
The log likelihood function (3.4) becomes
k+1 o a
Lt:0)=mC+ Y nin{[4p)]" - [Ai_l(ﬁ)} |3 (3.5)
i=1

We also let
D9®) = [4(8)]" - [Aa(0)]", i=1, k41,

so that the log likelihood function (3.5) can be written in a more compact way as

k+1
L(t;8) =InC+ > n;ln DW(G). (3.6)

i=
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For ease of notation, we will denote, for any function f(z,y), the first partial deriva-
tives by fz, fy, and the second partial derivatives by f.., fyys feyr Fyz- To write
the log normal equations, compute the first partial derivatives of the log likelihood
function as follows:

1 pld)
ﬁa = 222:1 nim, {37)
k41 pW
8
Eﬁ = z_: ’ni——D(i)(e) s (3.8)
where
, [A1(8)]% In A1(B), i=1,
Dl =
[A:(B))% In Ai(B) ~ [Aia(B)* In A;1(B), i=2, -, k+1,
and
o {the24 [41(8)°7'}, i=1,
p& _
J¢]

o {12722 (A — 2 1P (4 (B2}, =2kt L.

The maximum likelihood estimators of o and [ can be found by solving the system
of equations L, = L5 = 0. Although the proposed estimators cannot be expressed
in closed forms, they can easily be obtained through the use of an appropriate
numerical technique.

3.2 Asymptotic Confidence Bounds

Applying the usual large sample approximation, the maximum likelihood estima-
tors of # can be treated as being approximately bivariate normal with mean § and
variance-covariance matrix equal to the inverse of the expected information matrix.
That is,

(6-6) - N2 (0,172(D)) | (3.9)

where 11 (0) is the variance-covariance matrix of the unknown parameters 8 =

(a, B). The elements of the 2 x 2 matrix I"1, I;(8), i, j = 1,2, can be approximated
by Iij(é)‘ where

Iij(8) = — L, (3.10)

91"0:5 '
From (3.7) and (3.8), the second partial derivatives of the log likelihood function are
found to be



A. Al-khedhairi, Ammar M. Sarhan and L. Tadj 205

} ) 12
k41 D DO (g) - {’Dg)}

Loo = L3

= [DO@)*
k+1 z)D 6) — [ ]
Lgg = ng ,
= [DW(6)]°
k+1 D(l)D(z)(g) 1)D(1)
»ca[} = ng 5
i=1 [DU)(g )}
where
(A8 {A1(B8) In® Ay(B) + tte= 11}, i=1,
() —
Daa e Q 1{ ln A )+t2 ___3{2}+ |
{ 108 }{Al 1(B)In? A 1(8) + €2 e M) i=2 k1
—af{tle 1~ a(1- AN [AB) ), =1,
(i) _
Dg[;’ - —a {t?e_ﬁtf (1 _ ae-—ﬂt?) [Ai(ﬁ)]a—2 4
—tf e (1-ae ™) (A (@)1}, i=2 0kt
e~ (4y(8)° 7 {1+ aln [ (8)] }, i=1
DU)

@0 =) e [AB) T {1+ aln[4(8)] +
+8 e AL EP T {1 a4 @) ), i=2 k4L

Therefore, the approximate 100(1 — v)% two-sided confidence intervals for o and
B3 are, respectively, given by

&+ Zyp IO, BEZy\/15(0).

Here, Z., /5 is the upper (v/2)th percentile of a standard normal distribution.

4. ILLUSTRATIVE EXAMPLE

In this section we use a set of real data presented in Nelson {1982}, which reports
a set of cracking data on 167 independent and identically parts in a machine. The
test duration was 63.48 months and 8 unequally spaced inspections were conducted
to obtain the number of cracking parts in each interval. The data were
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(t1,---,tg) = (6.12,19.92,29.64, 35.40, 39.72,45.24, 52.32, 63.48),

and
(n1,---,ng) = (5,16,12,18,18,2,6,17, 73).

We assume that these data follow different distributions. Besides the generalized
Rayleigh distribution, GRD(a, 8), the distributions considered here are:

1. Exponential with parameter o, ED{c). Its survival function is

Sty=e ' t>0,a>0.

2. Generalized exponential with parameters «a, 3, GED(q, 3). Its survival func-
tion is

S(t)zl—(1-e—°f)’3, £>0,0.8>0.

First we compute the maximum likelihood estimator(s) for the parameter(s) in-
cluded in each distribution. Then we compare these distributions based on two differ-
ent criteria. The criteria used are: the log-likelihood function and the Kolmogorov-
Smirnov (K-S) test statistic. Finally, we compute the asymptotic confidence interval
of the parameters of the underlying distribution and the maximum likelihood esti-
mate of the MTTF of each distribution.

Table 4.1 shows the MLE of the parameter(s) and MTTF of the distributions
considered and the associated Log-Likelihood function value.

Table 4.1, The MLE of the parameter(s), MTTF and the Log-Likelihood.

MLE
Distribution parameters MTTF | Log-Likelihood
ED{e) & = 1.2097 x 1072 82.666 -316.671
GED(a,8) | & = 2.0285 x 1072, 3 = 1.7839 | 69.551 - 309.740
GRD{¢, 5} & =0.684, 3 =1425x 10"% | 62.229 -291.954

Based on the values of the Log-likelihood functions, we can conclude that the
GRD(0.684, 1.425 x 10™4) fits this data much better than ED(1.2097 x 10~2) and
GED(2.0285 x 1072,1.7839). ,

Figure 4.1 shows the empirical hazard rate and fitted hazard rate functions of
the ED(1.2097 x 10~%), GED(2.0285 x1072,1.7839) and GRD(0.684, 1.425 x 10™%),
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Figure 4.1. The empirical and estimated hazard rate functions.

The variance covariance matrix of GRD(0.684, 1.425 x 107%) is computed as

) (4) = 3.13x 1073 2293 x 1077
T | 2293 x 1077 3.705 x 10710

Thus, the variances of the MLE of « and § become Var (&) = 3.13 x 1073 and
Var (5) = 3.705 x 10710, Therefore, the 95% C.I of o and 3, respectively, are

(0.574, 0.794]  and [1.048x10’4,1.803x10*4].

The survival function of the data is estimated using non-parametric and paramet-
ric methods. In the case of the non-parametric estimation, we used Kaplan-Meier
method. For the parametric estimations, we used the three distributions mentioned

above. Figure 4.2 shows the results of these estimations.
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Figure 4.2. The empirical and fitted survival functions.

Also, we computed the Kolmogorov-Smirnov (K-S) test statistics of the empirical
distribution function and the fitted distributions for the data set. The values of these
statistics are summarized in Table 4.2 below.

Table 4.2. The K-S distances.
Distribution | ED | GED | GRD

K-S 0.214 {1 0.144 | 0.105

Based on the values of K-8, we get the same conclusion that the GRD(0.684,
1.425 x 10™4) fits this data much better than ED(1.2097 x 1072) and GED(2.0285 x
1072, 1.7839).

5. CONCLUSION

The parameter estimation of the generalized Rayleigh distribution with two un-
known parameters « and 3, GRD(«, 8), based on grouped and censored data is
discussed in this paper. The maximum likelihood technique has been used to de-
rive both point and interval estimations of the two unknown parameters o and
B. We tested the GRD(«, f) against both the generalized exponential distribution
with two parameters a, 3, GED(a, §), and exponential distribution with parameter
a, ED(a), using a set of real data from Nelson (1982). Based on the two crite-
ria (the values of the log-likelihood function and K-8 test statistic), we found that
the GRD(0.684, 1.425 x 10™*) fits the data better than the ED(1.2097 x 1072) and
GED(2.0285 x 1072, 1.7839).
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