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Abstract. Posbist reliability of typical systems is preliminarily dis-
cussed in Cai (1991). In this paper. we focus on the posbist relia-
bility analysis of somc typical systems in depth. First, the lifetime of
the system is dealt as a fuzzy variable defined on the possibility space
(U, ®, P,ss) and the universe of discourse is expanded from (0, +00) to
{—o00,+00). Then, a concrete possibility distribution function of the
fuzzy variable is given, i.e., a Gaussian fuzzy variable. Finally, posbist re-
lability of typical systems (scrics, parallel, series-parallel, parallel-series,
cold redundant system) is deduced. The expansion makes the proofs of
some theorems straightforward and allows us to casily obtain the pos-
bist reliability of typical systems. To illustrate the method a numerical
example is given.

Key Words: Posbist reliability, gaussian fuzzy variable, system lifetime,
Sfuzzy reliability.

1. INTRODUCTION

Conventional reliability theory is based on the probability assumption and the
binary-state assumption {Cal, Wen and Zhang (1993). Although probability theory
is a dominant tool in dealing with many conventional reliability problems, yet it
is not true in all cases. For example, when the failure probabilitics of components
arc very small (10 7) or when systems are lack of sufficient statistical information,
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and so on. These fundamental problems of conventional reliability theory have led
rescarchers to look for new models or new reliability theories which do not have the
shortcomings of the classical probabilistic definition of reliability. Among others, we
mention Tanaka ct al (1983), Singer (1990), Onisawa (1988), Cappelle and Kerre
(1993), Cremona and Gao (1997), Utkin and Gurov (1996) and Cai et al (1991, 1993,
1995) who have all tried to define reliability in terms other than probabilistic ones.
Therefore, fuzzy methodology is inevitable introduced to accounting for uncertainty.

With the development of about 10 years, the main categories of fuzzy reliability
theory are Cai {1996a):

(1) profust reliability theory: it is based on the probability assumption and the
fuzzy-state assumption.

(2) posbist reliability theory: it is based on the possibility assumption and the
binary-state assumption.

(3) posfust reliability theory: it is based on the possibility assumption and the
fuzzy-state assumption.

We can find several forms of fuzzy reliability theories, including profust reliability
theory Cai (1993), posbist rcliability theory Cai (1991), and posfust reliability the-
ory, are proposed using ncw assumptions, such as the possibility assumption and the
fuzzy-state assumption, in place of the probability assumption or the binary-state as-
sumption. For some very large complex systems, cquipment and some components,
it is very difficult to obtain nccessary statistical data Huang (1996). Furthermore,
their parameters, which defined the occurrence properties of variables, are of no
statistical behavior of probability. Thus, subjective evaluation generally by experts
based on their engineering judgement is more significant than objective statistics
for their reliability behavior. Posbist reliability theory demonstrates its advantages
over conventional reliability theory Utkin et al (1996), Cai et al (1991,1995). Cai
et al (1991,1995) used the mathematical notions of possibility and fuzzy variable
to develop a theory of posbist reliability and posbist reliability of typical systems,
such as series, parallel, k-out-of-n and fault-tolerant systems, has been preliminar-
ily discussed. However, Cai’s work is confined to nonrepairable systems. Utkin et
al (1996) proposed a general approach to formalize the reliability analysis on the
basis of a system of functional equations according to Cai’s theory. Cooman (1996)
introduced the notion of possibilistic structure function based on the concept of
classical, two-valued structure function and studied possibilistic uncertainty about
the states of a system and its components. Cremona et al (1997) presented a new
reliability theory measuring and analyzing structural possibilistic reliability similar
in its methodology to the probabilistic reliability theory based on the principles of
possibility theory. Moller et al (1999) applied possibility theory to safety assessment
of structures considering non-stochastic uncertainties and subjective estimates of
objective values by experts. Savoia (2002) presented a method of structural relia-
bility analysis on the basis of possibility theory and fuzzy number approach. Guo
et al (2002) developed a new model of structural possibilistic reliability based on
possibility theory and fuzzy interval analysis.
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In this paper, based on posbist reliability theory, the lifetime of the system is
dealt as a fuzzy variable defined on the possibility space (U, @, Poss) and the universe
of discourse is expanded to (—o0,+00) . In most practical cases, the possibility
distribution funetion (i.e., the membership function) u.(x) can be approximately
by two functions L(z) and R(z) with a point of intersection mazp(z) = 1, ie.,
L —~ R type possibility distribution function. For more details, see Dubios and Prade
(1979). So, we consider the lifetime of the system as a Gaussian fuzzy variable,
which is a kind of special L — R typc fuzzy variable. On the basis of these, posbist
reliability design of typical systems (scrics, parallel, serics-parallel, parallel-series,
cold redundant systems) is deeply discussed. In scction 3, we can sce that the
expansion from {0, +00) to (—o0, +20) doesn’t influence the nature of the problems
we will solve. On the contrary, it makes the proofs in Cai (1991,1995) straightforward
and the complexity of calculation is greatly weakened.

2. POSBIST RELIABILITY THEORY

Posbist reliability theory assumes that (1) the system failure behavior is fully
characterized in the context of possibility theory and that (2) at any time the system
is in onec of the two crisp states: perfect functioning statc or complete failed state

Cai (1991).

2.1 Basic concepts in the possibility context

The concept of posbist reliability theory is introduced in detail in Cai (1991).
Here we simply consider the basic definitions related to this theory.

Definition 2.1. (Cai (1991)) A fuzzy variable X is a real valued function defined
on a possibility space (U, ®, Ppss)

X :U — R={-00,+00)

Its membership function ug Its membership function R to the unit interval [0,1]
with

He(z) = Poss(X =), 7 ¢ R
Thus a fuzzy set X can be induced on R
X = {iﬁ" U‘E(I)}

Based on X , we may induce the distribution function of possibility associated to X
such that

m(z) = pz(x)
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Definition 2.2, (Cai (1991)) The possibility distribution function of a fuzzy
variable X, denoted by 7z, is a mapping from R to the unit interval [0, 1] such that

T(z) = pz(z) = Poss(X =), 2 ¢ R

Definition 2.3. (Cai (1991)) Given a possibility space (U, ®, P,s,), the sets
Ay, Ay, Ay C @ are said to be mutually unrelated if for any permutation of the
set {1,2,---,n}, denoted by {i1,2, -, 4k }(1 < k < n), there holds

poss(Ail N Aiz <N Ais) = min(Poss(Ail), Poss(Aiz), v Poss(Aik))

Definition 2.4. (Cai (1991)) Given a possibility space (U, ®, P,ss), the fuzzy
variables X1, X3, -, X,are said to mutually unrelated if for any permutation of the
set {1,2,---,n}, denoted by {i1,42, - ,ik}(1 < k < n), the sets

{X‘il = xl}v{X‘iz = .TQ},‘ ) "{Xik - .Tk}

arc unrelated (z1,xz9, -, 2k € R).

2.2 Lifetime of the system

Failure of a system based on binary-state assumption is defined precisely. How-
ever, the instant of a system failure occurrence is uncertain so that we can't de-
termine it accurately, and it is characterized in the context of possibility measures.
According to the existence theorem of possibility space Utkin et al (1996), we can
reasonably assume there exists a single possibility space (U, ®, P,ss) to characterize
all the failure uncertainty of the system and its components. Accordingly, lifetimes
of the system and its components should be dealt as Nahmias’ fuzzy variables defined
on the possibility spacc.

Definition 2.5. {Cai (1991)) Given a possibility space (U, @, Ppss), lifetime of
a system is a non-negative recal-valued fuzzy variable

X :U — RT = (0, +00)
with possibility distribution function
pz(x) = Pogs(X = xz),x ¢ R

Then posbist reliability of a system is the possibility that the system performed
its assigned functions properly during a predefined exposure period under a given
environment.

R(t) = P(X >1t)
= sup Poss(X = u)
u>t

= suppg(u),te RY (2.1)

u>t
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In real-life problems, considering the requirement of simplifying operation, we
may expand the universe of discourse about system lifetimes from (0, 4+00) to (—o0, +00)
i.c.

X :U— R=(-00,+00)

However, in the next section, we will see that the expansion doesn’t influence
the nature of the problems we will solve. On the contrary, it makes the proofs in Cai
(1991,1995) straightforward and the complexity of calculation is greatly weakened

3. POSBIST RELIABILITY ANALYSIS OF TYPICAL SYSTEMS

First, we assume that the components composing a system are mutually unre-
lated. That is to say, the lifetimes of the components, denoted by X, Xo,- -, Xy,
are mutually unrelated. Furthermore, we assume the possibility distribution func-
tion of X; is a Guassian fuzzy variable. Its characteristic of distribution is illustrated
in Fig 3.1.

exp | — (%‘—1)2 , T <my
o, (&) = e (3.1)
exp | — (I—ETB—L> , T>my

where my,b; > 0,i=1,2,--+,n.

3.1 Posbist reliability of series systems

Consider a serics system consisting of n components. Suppose z is the system
lifetime and X;{1 < ¢ < n) is the lifetime of component ¢ . There holds

X :mz’n(Xl,Xg,n-,Xn). (3.2)

Theorem 3.1. (Cai (1991)) Consider a series system of two componcnts. Let
the system lifetime be X with possibility distribution function px and X1, X2 be the
lifetimes of the two components respectively defined on possibility space (U, ®, Py;).
If we assume that X, X are mutually unrclated and each a normal, strictly convex
fuzzy variable, with continuous possibility distribution functions px, (z) and px,(z)
respectively. Then there exists a unique pair (ag, az), a1, a2 € RY , such that

maz(px, (2), kx,(z)), z<a

pa(z) = wx, (x), a1 < T < ag (3.3)
min{ﬁ.’(x(l‘)vﬂxz(x))v T >ag

Since we assume that X7, Xo are mutually unrelated, normal and strictly convex

fuzzy variable, with continuous possibility distribution functions, posbist reliability
of the series system of two components is



142 Posbist reliability analysis of typical systems

0 m
Figure 3.1. Possibility distribution function of X;.

R(t) = suppux(u)

u>t
1, fS a)
= EXx, (t)a ay < t S as
min(pxl (t)’ ,U,xz(t)), t> a9
1, t<m
my —1 2
— exp | — (-—h) , my <t<my (3.4)

min (exp (- (%?-1)2) ,eXp (- (‘—”{}5@1)2)) , t > mg

Proof. Without loss of generality, we assume a; < as. Since

X = min(Xl,Xg),

We have
Rs(t) = Poss(X > t)
— Poss((Xl > t) n (X2 > t))
= Min(Pogs(X1 > t), Pogs( X2 > 1)) (3.5)
Further

Pos(X1>t) = supt)‘uxl(u)
u>

1, z < ap
_ 3.6
{ ux, (), z>a (3.6)

and
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Poss(XZ > t) = SUI: [25.¢% (u>
u>
1, r<a
= = 3.7
{ “Xz(l'): T > a9 ( )
Then
Rs@) = Suppx (u)
u»t
1, z<a
= wx, (1), a <t<a (3.8)

min{px, (t), ux,(t)), t>ap

Since we assume X, Xy arc normal fuzzy variable, the Eq. (3.4) becomes evident.
QED.

For a scrics system of n components, if X, Xg, -, X, are mutually unrelated
and

px, (@) = px,(z) = px, ()

Then according to Theorem 1, we can easily arrive at

HX (:E) = KX (CL‘) (39)

So posbist reliability of the series system of n components

Rs(t) = suppux(u)

u>t
= i\;guxl(zt)
1, t<a
- { px, (t), t>a
1, t<my
o). om o

3.2 Posbist reliability of parallel systems

Consider a parallel system consisting of n components. Suppose X is the system
lifetime and X;(1 < i < n) is the lifetime of component i. There holds
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X =maz(Xy,Xe, +, Xn) (3.11)

Theorem 3.2. (Cai (1991)) Consider a parallel system of two components. Let
the system lifetime be X with possibility distribution function px and X;, X5 be the
lifetimes of the two components respectively defined on possibility space (U, ®, P,ss).
If we assume that X, X5 arc mutually unrelated and each a normal, strictly convex
fuzzy variable, with continuous possibility distribution functions px, (z) and px,(z)
respectively. Then there exists a unique pair (ay,4a2),a1,a2 € RY | such that

min(px, (z), px,(z)) < a
px(z) = px,(z) 4 <z <ay (3.12)
maw(#xl (z):ﬂX'z(x)) T > ay
Since we assume that X, X, are mutually unrelated, normal and strictly convex

fuzzy variable, with continuous possibility distribution functions, posbist reliability
of the parallel system of two components is

Ry(t) = suppux(u)
u>t

_ 1, t<ay
mazxr (,le (t)a /j'Xz (t)) ’ t > az
l, t S mo

o - ) () 5 2

Proof. The proof is analogous to that of posbist reliability of series systems. QED.
din
Similarly, for a parallel system of n components, if X;, X3, -, X, arc mutually
unrelated and

px,(z) = px,(z) -+ = px,(z)
Then we can easily arrive at posbist reliability of this parallel system of n components

Ry(t) = supux(u)

u>t
= suppux, (u)
u>t

_ 1, t<a;
[J.xl(t), t>a
1, t<m

{ oxp (_ (t—Trlnxf) t > my (3.14)
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3.3 Posbist reliability of series-parallel systems

Consider a serics-parallel system which is a series system of m subsystems, and
where every subsystem is a parallel system of n components.

Let X;(1 €7 < n) be the lifetime of component 7, let X be the system lifetime.
Further, we assume Xy, X3, -+,Z,4n are unrelated and every a normal, strictly
convex fuzzy variable, with the same continuous possibility distribution function

px, (@) = px,(2) = px, . (27) (3.15)

Then for cvery subsystem, which is a parallel system, we can arrive at posbist
reliability of it according to Eq.(3.14)

Rm(t) = sup ux,(u)

unt
1, t<ay
B { px;(t), t>a
1, t<my
= { exp <~ (t_—b_lm;y)‘ t>m; 1<i<n (3.16)

Further, according to Eq.(3.10), we can arrive at posbist reliability of the series-
parallel system

Rep(t) = Ru(t)

= sup px, (u)
u>t

1, t<mq

i {CX" (“ (2‘3%”‘*)2) t>m (3.17)

3.4 Posbist reliability of parallel-series systems

Consider a parallel-series system which is a parallel system of m subsystems, and
where every subsystem is a series system of n components

Let X;(1 €1 < n) be the lifetime of component 4, let X be the system lifetime.
Further, we assume Xy, Xo, -+, Z,4+m are unrelated and every a normal, strictly
convex fuzzy variable, with the same continuous possibility distribution function

px, (x) = px,(x) = px, . () (3.18)
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Then for every subsystem, which is a series system, we can arrive at posbist reliability
of it according to Eq.(3.14)

Ra(t) = suppx,(u)
u>t
_ 1, t<
a { px,(t), t>a
1, t<m
{ exp (- (%)2) , t>m 1<i<n (3.19)

Further, according to Eq.(3.10), we can arrive at posbist reliability of the parallel-
series system

It

Rps(t) = Rsz'(t)
= suppx, (u)
u>i

1, t < my
2
exp (— (%l) ) , t>my (3.20)

To sum up, it is obvious that series, parallel, series-parallel and parallel-series
systems consisting of the components with the same possibility distribution function
of the lifetime have the identical posbist reliability.

3.5 Posbist reliability of cold redundant systems

The operating mechanism of a cold redundant system is as follows. At any time
only one operative component is required and the other operatives arc redundant if
they are not failed. We suppose the components are activated sequentially in order.
Failure and performance deterioration will never occur to components in idle states.
A system failure occurs only when no operative component is available. Here we
only discuss the instance in which the fail-safe device and the conversion switch are
absolutely reliable.

Consider a cold redundant system of n mutually unrelated components, as de-
picted in Fig 3.2. Let X;(1 £ i < n) be the lifetime of component . Let X be
the system lifetime. Further, X;(1 < i < n) and X are fuzzy variables defined on
a possibility space (U, ®, Poss), with possibility distribution functions px,(z) and
wx (z) respectively. We have

X=X1+Xo+ +Xp (3.21)
Then posbist reliability of the system is
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Figure 3.2. Cold redundant system,

R(t) = Pus(X >1)
= sup Pogs(X = u)
wst

= su;t) px(uw) (3.22)
u>

For a cold redundant system of two components, since X;, Xs are L — R type
fuzzy numbers, then according to the addition operation of L — R type fuzzy numbers
Dubois ¢t al (1979), we have

px(x) = Px+xg)(T)
2
oxp(— (W) ), T < my+ mo
= 4 (3.23)
exp (— (————%z“(,:?i;m”> ) , T >my+my
Further, we can arrive at posbist reliability of the system
R (t) = supux(u)
u>t
= SUP f1(x, +Xz) (W)
u>t
1, t < my +my
= _ 2 24
cxp(— (t %?:;;"2) ), t>m; +my (3.24)

Similarly, for a cold redundant system of n components, we have

Ex(T) = X, 4 Xt Xn) ()
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n 2
Zml—-z n
exp | - | &i— y TS Yy my
Zbi i=1
= 9 T 2
z— m, n
exp| - | ——— y T > ) my
b, =1
\ =1

Then we can casily arrive at posbist reliability of the system

Rcr(t) = Suppx (u)
u>t

= SUPH(X1+X2+-~-+X,,)(U)
u>t

mn
namel, t< Y my

n 2 =1

= t—z m; n
exp | - =1 , > y.my

Yob i=1

4. EXAMPLE

(3.25)

(3.26)

Calculate posbist reliability of a series, parallel, cold redundant system (suppos-
ing the fail-safe device and the conversion switch absolutely reliable), respectively,
and every kind of system consists of two mutually unrelated components. Further,

we assume the lifetime of each component is normal fuzzy variable, i.e.

exrp —(1220")2 , <120 exp —('

Pz, (T) = 2 Py (T) =
l exp _(z—4})20> , = >120 exp —(

Here t = 140.
4.1 The series system

Posbist reliability of it is:

Rs(T) = supux(x)

u>t
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1, t<m
= ! exp(m (ﬂgfi 2), my <t<mg
min <ea:p (~ (-t:é—"-lf) , ETP <- (t—“-'gzmi)z)> , t>mg
( 1, t <120
- eap ( - (5 2) ES120 gy
\ min (exp (- (‘]})20)2) ,exp (— (%@)ZD , t>130

4.2 The parallel system

Posbist reliability of it is:

Ry(t) sup px (u)

us>t

I

]., t < ag
max(“.‘(l (t)’ ﬂXz(t)}: t>ay

{ma:v(ezp(—-(i:mfm)2>’emp(v(g_:£ﬂ)?>>’ t5m, (42

Il

4.3 The cold redundant system
Posbist reliability of it is:
Rer(t) = suppux(u)
u>t
= SUpux;+x,(u)
u>t
1, t<my+mg
E= - , 2
exp(— (E—T(f—‘l—‘g:—”—)) ), t>my+mg
1, t < 250
= s 2 .
exp (— (=20) > t > 250 (4.3)

when t = 140,we have:
oo (140 - 120)2
exp 40

0.7788

R,(140)

I}

il
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_ 2
R,(140) = exp <~ (-1—40—50—1—@)>
0.9608

It

R (140) = 1

In this case, we can arrive at a conclusion as follows:
Posbist reliability of parallel systems is higher than that of series systems, and
posbist reliability of cold redundant systems is higher than that of parallel systems.

5. CONCLUSIONS

This paper adds new insights to the important work of Cai (1991,1995) as follow:

(1) Although conventional reliability thcory has been a dominant tool to evalu-
ating system safety and analyzing failure uncertainty, yet the uncertainty concerned
with the system and its components cannot be always defined in the framework of
probability. With the advent of highly complex systems and vast variations of system
characteristics, pcople have realized that probability theory is not a panacea. In this
paper, based on posbist reliability theory, the lifetime of the system is considered
as a Gaussian fuzzy variable. On the basis of these, posbist reliability of typical
systems (series, parallel, scries-parallel, parallel-series, cold redundant systems) is
deduced.

(2) The universe of discourse about system lifetimes defined in Cai (1991,1995)
is expanded from (0, +00) to (—o0,+o00) . However, we can find in section 3 this
expansion doesn’t influence the nature of the problems we will solve. On the con-
trary, it makes the proofs in Cai (1991,1995) straightforward and the complexity of
calculation is greatly weakened.
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