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Testing NBUCA Class of Life Distribution Using U-Test
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Abstract. In this paper, testing exponentiality against new better than
used in convex average and denote by (NBUCA) , or its dual (NWUCA)
is investigated through the U-test. The percentiles of these tests are
tabulated for samples sizes n = 5(1)40. The power estimates of the
test are simulated for some commonly used distributions in reliability.
Pitman’s asymptotic efficiency of the test is calculated and compared.
Data of 40 patients suffering from blood cancer disease (Leukemia) is
considered as a practical application of the proposed test in the medical
sciences.
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1. INTRODUCTION

The aging life is usually characterized by a nonnegative random variable X 2 0
with distribution function (cdf) F and survival function (sf) F = 1 — F. Associated
with X is the notion of “random remaining life” at age ¢, denoted by X,, where X,
has an sf as

~ Flz+1)

Fi(z) = z,t > 0. (1.1)

——m—v y b2

Note that X; £ X, or Fy(z) = F(z) (st denotes the stochastic ordering ) if and
only if F is an exponential distribution. Comparing X and X; in various forms
and types create classes of aging useful in many biomedical, engineering and statis-
tical studies, see Barlow and Proschan (1981). It is well known that the relation

it _ N
X, 65 X or Fi(z) < F(x) defines the class of new better than used (NBU). On the
other hand. the relation E{X;) < E(X) defines the class of new better than used in
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expectation (NBUE), and decreasing mean residual lifetime (DMRL). Testing expo-
nentiality against anyone of these classes forms a vast literature pool. Most of the
testing procedures, are based on developing empirical estimates of departure from
exponentiality in favor of the alternative class. The result test statistics are mainly
version of U-statistics. For this vast literature we refer the reader to the surveys by
Doksum and Yandell(1984); Loh(1984) and Hendi et al (1998). In the present paper,
comparing between the life distribution of a new unit with that of the remaining life
or a used unit in increasing convex average order leads us to introduce a new class
of life distribution. This new class is larger and perhaps more practical than the
NBUC class introduced by Cao and Wang (1991) and further by several authors,
including Hendi, Mashour and Montaseer (1993), Li,Li and Jing(2000), Hu and Xie
(2002), and Ahmad and Mugdadi (2003) among others. Our new class compares a
new life to that is used (of age t) in a new or ordering sense which we call ”increasing
convex average” ordering.

The paper is organized as fillows: Section 2 contains, notations and basic prop-
erties which are used to intoduce the class of the ” new better than used in the
increasing convex average” (denoted by NBUCA) In Section 3 of this paper, we use
U-statistic to test Hy : F is exponential{u) versus Hy : F € NBUC A and not expo-
nential, where p = [;° F(u)du. Also, we simulate the critical points for the statistic
used in the test through Monte Carlo methods for sample sizes n = 5(1)40. Next,in
section 4 we calculate the power of the test based on some other alternative life
distributions, including, the linear failure rate, Gamma and Weibull distributions.
To show the efficiency of our results, we calculate Pitman asymptotic efficiency and
compare our result by this given by Kango (1993). Finally, we apply our test to real
practical data in medical science given by Abouammah et al. (1994) in section 6.

On the other hand, an ordeing of life variable that proved useful in produc-
ing classes of life distributions is due to Stoyan(1983), cf. Bhattacharjee(1991) for
definition and properties.

2. DEFINITIONS

In this section we present definitions, notations and basic properties used through-
out the paper. We also give the definition of the new better than used in the in-
creasing convex average class of life distributions. We use increasing in place of
"non-decreasing” and “decreasing” in place of "non-increasing”.

Let X and Y be non-negative random variables with distribution function F(z)
and G(z) respectively, and survival function F(z) and G(x). We say that X is
smaller than Y in the

(i) the usual stochastic order(denoted by X <y Y), if F(z) < G(z) ;
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(ii) the increasing convex order (denoted by X <;., Y), if

/ F(u)du S/ G(u)du for all x;
£ X

(iii) the increasing convex average order (denoted byX <. Y),if

00 oo o0 poo
/ / F(u)dudz S/ / G{u)dudz for all x.
G T 0 x

See Ahmad et al.(2006).

In economic theory, these orders are known as first-order stochastic dominance
denoted by X FSD Y, second-order stochastic dominance denoted by X SSD Y,
and weak third order stochastic dominance, denoted by X WTSD Y. For more
details, see Deshpande et al.(1986) or Kaur et al. (1994).

On the other hand, in reliability theory, it has been found useful to define non-
parametric classes if lifetime distributions by stochastic comparison of survival func-
tion of the lifetime of a new one. For example, let X; = [X — t|z > t] denote to
residual lifetime of X at time ¢, and it is the time to failure of a unit with lifetime ¢
and let X be a non-negative random variable with distribution function F'. we say
that

(i) X (orF)is new better than used (denoted by X € NBU) if

X <g X, for all t >0,

(ii) X (orF) is new better than used in the convex order {denoted by X €
NBUC) if
Xi <ier X, for all ¢t > 0;

The NBU class was introduced by Bryson and Siddiggui (1969) and independently
by Marsharll and Proschan{1972). It has grown to become one of the most studied
classes life distributions. The new class is larger and perhaps more practical than
NBUC class introduced by Cao and Wang (1991),

‘ollowing the same ideas, we now introduce a new aging class of life distributions
by stochastic comparison of the survival function of residual lifetime of a used unit
with that of the lifetime of a new one in the increasing convex average order sense.
Precisely, we have:

Definition 2.1. A random variable X (or F') is said to be new better than used in
the convex average order (denoted by NBUCA) if

X! Sécza Xr
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equivalently, X € NBUCA if

00 OO _ - oo foo
/ / Flu+ t)dudz < F(2) / / F(u)dudz for all t.
0 T 0 T

or, X € NBUCA if X WSTSD Xu.

Note that Definition 2.1 is to saying that 2 fo o(z + t)dt < uaF(t), where po =
E(X?), assumed finite, and 9(z) = [° F(u

In fact, the NBUCA class is related to, but contains and is much large than the
NBUC class. The following chain summarizes the implications among some of the
previous class

IFR=IFRA= NBU = NBUC = NBUCA.

3. TESTING EXPONENTIALITY VERSUS NBUCA CLASS

The proposed test depends on a sample X1, Xg,..., X, from a population with
density function F' which will be used to test the null hypothesis Hy : F(z) =
e:z:p(—'ﬁ), z >0, > 0 (u is unknown) versus H; : F € NBUCA, that is X; <jeza X
or equivalently

/ / F(u+ t)dudz < F(t)/ / F(u)dudx for all z,t > 0.
1] z 0 T
In order to test Hg against Hi, we use the following measure of departure from Hy
- o oo 00 L0
50 = E[F(t) / / F(u)dudz — / / Flu + t)dudz) (3.1)
0 T 0 x
simplifying (3.1) we obtain
b = EF(thi = [ (2~ %dF (@) (3:2)

where g = E(X?), assumed finite, there for

Sea = /OOO[F(t)p;g~ /{ (z — £)2dF (2)|dF (1) (3.3)

2
Note that 8., = 0 under Hy and 6, > 0 under Hy and pp = Y po; %By using
random sample of size n, the empirical estimate 0, 0f 600, Fr(z) = % Y I(X; > )
denote the empirical survival distribution, dF,(z) = 7—13, 1 is estimated by the sample

mean X and py is estimated by 2 = Y_po; ﬁnz Then 6., is given by using (3.3) as
X o1& 9
/ Z I(X; > @ Z Tk IS - 01X > )dFa()  (3.4)

e O et
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i.e.
. 1 7 n n .
b= = 3200 3 0XF — 0 - XJAI(X; > X) (3:5)
im=1 j=1 k=1
where
_ 1 >y,
Iz >y) = { 0 otherwise. (3.6)

Thus to make the test statistic 5m in (3.5) scale invariant we take
Acy = b0 ) X? (3.7)
where X = Y p_, 2k is usual sample mean.

Setting ¢(X1, Xo, X3) = [X2 ~ (X2 — X1)%]I(Xs > X)) and defining the sym-
metric kernel V(X |, Xy, X3) = :”}IZR (X4, Xiy, Xiy), where the sum is over all
arrangements of Xy, Xy and X3. The 36,1 in (3.7) is equivalent to the U-statistic

Un =z >, W(X:, X5, X). (3.8)
(3) < j<k

The following theorem gives a summary of the large sample properties of A, or Up.

Theorem 3.1.

(i) As n — oo, n(U, — A,) is asymptotically normal with mean 0 and variance
is given by

widF(u) +2X, /OC udF(u)

1 _ o0
0'2 = —-ZVaT'{;QF(Xl)-—/
K Xy

X1
— XZP(X1) + peF(X)) — X2F(Xy) +2X, /\ udF (u)
- /h w2dF (u) +X2/ Fu)dF(u) - f ] w2dF(u)dF (y)
+ / / 2uye” “"ydudyw/ y°F } (3.9)
{(ii) Under Hp, the variance reduces to

2
2 _ Var QXI__)_(l_l =1, 3.10
g 2

(iit) If F is continuous NBUCA, then the test is consistent.
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Table 3.1. Critical values of the test statistic Aca

n 1% 5% 10% 90% 95% 99%
9 |[-.91344 -51259 -.34444 .26705 .30747 .35929
6 | -.91415 -.51550 -.34551 .26319 .29978 .35362
7 | -.89827 -.51946 -.34208 .26059 .29903 .35113
8 | -.85615 -.48882 -.31989 .25407 .29186 .34794
9 | -.86729 -.46048 -.31432 .24672 .28237 .33967
10 | -.85258 -.45643 -.30258 .24185 .28098 .33845
11| -.83023 -.44745 -.29622 .23619 .27291 .32889
12 | -.80278 -.43260 -.28388 .23185 .26825 .32287
13 | -.75698 -.42347 -.28085 .22776 .26392 .32179
14 | -.72002 -.40669 -.26693 .22074 .25805 .31856
15 | -.73638 -.40639 -.26478 .21852 .25521 .31284
16 | -.72999 -.38879 -.26379 .21390 .24948 .30631
17 | -.69020 -.37884 -.26476 .20909 .24493 .30119
18 | -.67222 -37716 -.24795 20883 .24177 .29950
29 | -.67393 -.36427 -.24508 .20242 .23699 .29512
20 | -.64034 -.36440 -.24360 .20197 .23641 .28983
21 | -.66261 -.35950 -.24476 .19606 .23268 .28010
22 | -.62360 -.33968 -.23533 .19862 .23090 .28444
23 | -.60381 -.33306 -.23037 .19146 .22627 .28131
24 | -.58831 -.32873 -.22574 .19259 .22417 .27679
25 | -.58896 -.33208 -.22209 .18832 .22097 .27229
26 | -.56412 -.31259 -.21205 .18496 .22023 .27342
27 | -.56323 -.31939 -.22076 .17986 .21124 .26715
28 | -.53163 -.32466 -.21781 .17993 .21308 .26651
29 | -.58554 -.30887 -.20986 .17733 .20945 .26197
30 | -.52130 -.30470 -.19863 .17502 .20758 .26026
31 | -.53057 -.29564 -.20544 .17325 .20436 .25453
32 | -.52811 -.30175 -.20824 .17402 .20731 .25679
33 | -.51909 -.29401 -.19824 .16997 .20018 .25041
34 | -.49184 -.27440 -.19162 .16713 .19865 .25295
35 | -.49783 -.28306 -.19697 .16522 .19692 .24365
36 | -.49462 -.27886 -.19064 .16544 .19616 .24694
37 | -.45789 -.26351 -.18331 .16695 .19645 .24212
38 | -.47697 -.27154 -.19007 .15899 18939 .24248
39 | -.45476 -.26459 -.18574 .16065 .19421 .24015
40 | -.45908 -.26750 -.18532 .15878 .19085 .23861
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Proof.

By using the standard theory of U-statistic [Lee (1990)], one can easily prove
parts (i) and (ii). To prove part (iii), let D(z,t) = F(t)ug — [°(z — t)2dF in (3.3)
and since F is NBUCA and continuous, D{z,t) > 0 for at least one value of (z,t),
call it (2g,15). Now set

(z1,t1) = inf{(z,t)|(x < zp and t < t5)}, F(z) = F(z0) and F(t) = F(to)}.
Thus,

(e~ 0)2F) 2 Pt~ [ (2 - to)aF

ty

D(zi,t1) = F(tl)auz-/t

o0
= ‘F(tO)pQ - / (:E - tO)zdF = D($01t0) > Ov
to
and F{zy + &) — F(z1) > 0 and F{t; + d3) — F(¢1) > 0 and since r; and ¢; are
points of increases of F, thus A, > 0, then ghe test is consistent .
To use the above test, we calculate /nl.,/op and reject Hg if it exceeds the
normal variate Z;_,.

By using Monte Carlo methods, we calculate the empirical critical points of
A,y in (3.7), for different samples. Table 3.1 represents the lower and the upper
percentile points for 1%, 5%, 10%, 90%, 95% and 99% and calculations are based

on 1000 simulated samples n = 5(1)40.

4. THE POWER ESTIMATES

The power of the test statistic A in (3.5) is considered for the significant level
at 95% upper percentile and for most commonly used alternatives. These are:

(1) Linear failure rate:

Fi(z) = exp(—z ~ gzz),é >0, z>90,

(ii}Gamma:
o0

Fa(z) = / w81 exp(—u)du/T(6),6 > 0, z > 0,
x

(i) Weibull:
Fy(z) = exp(—2%), § >0, z>0.

These distributions are reduced to exponential distribution for appropriate values
qf #. The power of the test presented in Table 4.1 shows the power estimate of
Agg-statistic The power estimates in Table(4.1) shows clearly the departure from
exponentiality towards (NBUCA) properties as 6 increases and also as n increases.
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Table 4.1. Power Estimate of Aca—Statistic

Sample size

Distribution n=10 n=20 n=230

0.243 0433 0.626
0.284 0.508 0.721
0314 0597 0.791

Fy : Linear failure rate

0.318 0.583 0.704
0.628 0.905 0.973
0.822 0984  0.998

Fy: Gamma

F3 : Weibull 0.729 0972  1.000

1.060 1.000 1.000

W N R W N A W

1.000 1.000 1.000

5. PITMAN’S ASYMPTOTIC RELATIVE EFFICACY

Finally, to assess how good this procedure is relative to others in the literature,
we employ the concept of "Pitman’s asymptotic relative efficiency” (PARE), which
is defined as follows: Let Ty, and T, be two test statistics for testing Hy : Fg €
{Fg,},6, =6+ en~V/2 with ¢ an arbitrary constant, then the asymptotic relative

efficiency of Ty, relative to T}, is defined by

e(Tin, Ton) = {11(60)/01(80)}/ {12(60) /72(60)}

where

, , 0
pi(fo) = lzmnﬂoo{%E(Tin)}B—% and

0?(90) = limp—-oovarg(Ti), i=1,2 is the null variance
We choose the following three alternatives:

(i) Linear failure rate:
_ g 9
Fi(z) = exp(—z — é-z ),6 >0, z >0,

(ii)Makeham:
Fy(z) = exp[-z - 0(z+ e * - 1)}, >0, z >0,

(iii) Weibull: _
F3(z) = exp(~2%), >0, z > 0.

(5.1)

(5.2)

(5.3)
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[see, Hollander and Proschan(1975)].

Note that Hy (the exponential) is attained at # = 0 in (i} and (ii) and attained
at # = 1 in (iii) of above alternatives. Now to evaluate the "Pitman’s asymptotic
efficiency” (PAE) for our test A, and compare it (by taking ratios) to PAE of other
tests to get PARE. For the suggested above in {3.7), the PAE is given by

’

”(90)_.CZA | L?_[},
op 00" =60 = o, 08 Lud

_ /O > /x . @%Fe(u)d&(m)}]g%o. (5.4)

Since the above test Aca is new and no other tests are known for this class NBUCA,
we compare it with some other class tests such as U, is presented by Kango(1993)
and the results are summarized in Table 5.1 and Table 5.2.

{/Ow po(2) Fy(x)dFy(x)

Table 5.1. PAE of Aca and U,

PAE = “;(00) = V‘I(e)/gi(BO)!i =1,2,3
Distribution Aca Un
Fy @ Linear failure rate | 1.00 0.433
Fy : Makeham 0.25 0.144
F3 . Weibull 1.00 0.132

Table 5.2. PARE of Aca, with respect to U,

Distribution er, (A , Un)
Fy : linear failure rate | 1.0/0.433=1.736
F5 : Makeham 0.25/0.144=2.31
F3 : Weibull 1.0/0.132=7.576

Tt is clear from Table 5.1 and 5.2 that our new test statistic Aca performs well
for Fy, Fy and Fi and it is more efficient than the statistic U, which is proposed by
Kango{1993).

6. APPLICATIONS

In this section, we calculate the Am test statistic for the data set of 40 patients
suffering from blood cancer (Leukemia) from one of Ministry of Health Hospitals in
Saudi Arabia [see Abouammah et al. (1994)]. The ordered life times (in days) are:
115, 181, 255, 418, 441, 461, 516, 739, 743, 789, 807, 865, 924, 983, 1024, 1062, 1063,
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1165, 1191, 1222, 1222, 1251, 1290, 1357, 1369, 1408, 1455, 1478, 1549, 1578, 1578,
1599, 1603, 1605, 1696, 1735, 1799, 1815, 1852.

It was found that the test statistic A, in (3.7) has the following result Ay, =
0.390331 and this value is greater than the critical value in Table 3.1 at 95% upper
percentile. We therefore accept Hy, which states that the data has NBUCA property.
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