다공성 매체의 차원 분열 모델 적용에 의한 토양과 상토의 공극분포와 보수력 비교

오동식 $^{1} \cdot$ 김이열 $^{1,*} \cdot$ 정영상 2

¹농업과학기술원, ²강원대학교

Comparison in Porous Structure and Water Eetention with the Different Porous Media by Fractal Fragmentation Model

Oh Dong-Shig¹, Lee-Yul Kim¹,^{*} and Yeong-Sang Jung²

¹National Institute of Agricultural Science and Technology ²Kangwon National University

Using fractal dimensionality theory proposed by Riew and Sposito (1991), we attempted to analyze quantitatively the characteristics of porous distribution for built-in soils in the mini-lysimeter and artificial seed-bed media. The 2" stainless core soil samples were taken from lysimeter soils. Artificial seed-bed media were compacted in the acrylic core filled with raw materials consisted of cocopeat, zeolite and perlite. N (Constant number of partitioned group size smaller media volumes) and r (Self-similarity ratio) parameters consisting of fractal dimension D=log(N)/log(1/r) were obtained by Excel Programme using the Riew and Sposito's fractal model. The pore distribution of tested media was screened in pore size and its occurring frequency. The results reveal that the distribution range of pores is wider in the lysimeter soils than in the seed-bed media, while average size of pores in the media is smaller in lysimeter core soils than in seed-bed media.

Key words : Sampled core media, Fractal dimensionality theory, Porous structure

서 언

토양과 상토 등의 다공성 매체에 대한 공극 구조 해 석은 지금까지 매우 어려운 작업의 하나였다. 지금까 지 공극을 측정하는 장치는 개발되어 있으나 수은을 공극내 주입하는데 많은 에너지가 필요하고 측정장치 를 다루기가 힘들 뿐만아니라, 수은을 사용하기 때문 에 실험자의 인체에 손상을 가져올 수 있기 때문에 연구자들이 사용하는데 어려움을 겪어 잘 이용되지 않았다. 그러나 최근에는 공극구조의 분열 차원 분석 으로 물을 이용하여 토양 내 공극 크기 및 분포를 해 석할 수 있게 되었다(Jens, 1988, Hunt, 2004; Riew and Sposito. 1991a; Riew and Sposito. 1991b; Tyler and Wheatcraft, 1989). 이들 중 공극 구성을 정량적 으로 해석하는 차원 분열 이론을 정립하고(Riew and Sposito, 1991a), 공극 해석에 적용한 Riew와 Sposito의 이론적 모델을 가리켜, RS 분열차원 모델(RS Fractal Dimension Model 또는 RS Fractal Model)이라 한다.

접 수 : 2007. 5. 25 수 리 : 2007. 6. 13 *연락저자 : Phone: +82312900269,

E-mail: lykim@rda.go.kr

이 RS Fractal Model은 프랙탈(Fractal) 이론 중에서 공극구조 해석에 초점을 맞추었기 때문에 이 모델을 도입함으로써 토양 구조체를 물리적으로 이해하는 데 필요한 공극 형성을 정량적으로 분석할 수 있게 되었 다.

최근의 Fractal 이론은 물체의 미세구조나 매질 구 조체내에서 물질의 미세이동을 해명하는 데에 많이 적용되고 있는 이론이다(Jens Feder, 1988). 실제로 우 리는 미세구조를 보기위하여 전자현미경이나 MRA 촬영에 의한 Imaging 작업을 많이 하고 있다. 그러나 이러한 Imaging 작업은 촬영부분에 대한 부분 구조를 현시할 수 는 있으나, 그 촬영된 부분적 자료를 가지 고 전체를 판단하는 데는 한계가 있는 것 같다. 그러 나 Fractal 이론은 부분적 미세구조를 밝히면서 전체 의 구조체를 해명하는 이론체계를 구축함으로써 구조 체의 분화 발달 현상을 정량적으로 수치화 시켰다는 데 획기적인 의의가 있다고 판단한다. 특히 Porous media내 공극구조 발달은 이 Fractal 이론에 의해서 수치적으로 해석될 수 있는 가장 적절한 해명대상이 아닌가 한다. 토양, 상토, 세라믹 등의 매질은 그 구성입자들이 임 의로 다양하게 얼개를 이루고 있어 그 매질을 구성하 는 입자들의 공간적 위치를 결정한다는 것은 매우 어 려우며 이를 분산시켜 구성 입자를 크기 별로 등급화 시켜 나누어 놓고 구성입자의 크기 함량별 분포를 가 지고 토양구조를 어느 정도 해석할 수 있었다. 토양학 에서 규정하는 토성이라는 기본적인 토양물리성 지표 도 이를 바탕으로 하고 있는 것이다.

토양물리 구조체를 이해할 때 우리는 기본적으로 이러한 토성을 언급하게 되고 이제는 이에 대한 분석 은 보편화되었다. 토양 구성입자의 얼개가 임의화 불 확정성화 되었듯이 이러한 입자들의 구성에 의하여 형성 분화되는 공극 얼개도 임의화, 불확정성화 되는 것이다. 이들 입자나 공극의 분포위치가 변화지 않고 고정되어 있는 데도 불구하고 이들의 위치를 정확히 규정하기가 힘들다. 이 연구에서 토양과 상토 등의 다 공성 매체에 대해 RS 프랙탈 모델을 적용하여 토양 을 비롯한 다공성 매질의 공극구성을 정량적 구분 해 석하기 위하여 수은을 이용하지 않고 물을 사용함으 로써 토양구조를 파괴하지 않는 보다 간편한 시간과 비용이 절약되는 기법을 찾아내고자 하였다.

재료 및 방법

이 연구는 RS 프랙탈 모델 이론을 이해함으로써 가 능하기 때문에, 우선 이 이론을 간략히 소개한다.

이 RS 프랙탈 이론은 다음의 네 가지의 기본적 가 설을 전제로 하고 있다.

1) 토양, 상토 등의 매질체의 부피는 자기닮음(Selfsimilarity)을 갖고 연속적으로 분화하는 단계 (Successive Fragmentation Step)를 갖는 공극 및 입 단 크기의 등급으로 분해할 수 있다.

2) 각 등급 크기의 분화는 균일한 발생을 갖는 불완
 전한 분리 독립성을 갖는다.

3) 완전히 그리고 불완전하게 분화된 다공질 매체 (토양 등)의 Fractal Dimension화가 가능하다.

4) 다공 매질체내에서 공극 발생의 Fractal 분열 행 동은 축척되는 길이의 영역으로 표현한다.

위의 네 가지 가설을 전제로 RS 프랙탈 이론은 다 음과 같이 구성된다.

(Fractal Dimension $\widehat{\mathbb{m}}$: Riew and Sposito Model) $P_i \equiv V_i - V_{i+1} (P_i+1 = r \times P_i) (r = Similarity Ratio)$ $V_o = \Sigma_i + V_m (i = 0, \dots, m-1)$ $P_i / V_i = constant = \zeta$ (In a scaling porous medium the pore coefficient

 $(=\boldsymbol{\zeta})$ is uniform)

- $V_i \equiv N \times V_{i+1} + P_i$ (N constant no. of smaller partial volume)
- $V_{\circ} = \boldsymbol{\Sigma} N^{i} \times P_{i} + N^{m} \times V_{m}$
- $\begin{array}{l} (V_{\circ} = \text{ entire medium volume}) \\ \boldsymbol{\varPhi} = (V_{\circ} N^{m} \times V_{m}) / V_{\circ} \qquad (\boldsymbol{\varPhi} = \text{ porosity}) \\ = 1 (1 \boldsymbol{\zeta})^{m} \\ = 1 (r^{3 D})^{m} \qquad N = ?, r = ?, \boldsymbol{\zeta} = ? \\ \rightarrow D = \text{Log}(N) / \text{Log}(1/r) \\ (D = \text{ fractal dimension } \boldsymbol{\zeta} \ 3,0 \) \end{array}$

Where, P^{i} = Partial pore volume in i^{th} class,

- V_i = Partial media volume in ith class,
- V_{\circ} = Entire media volume,
- V_m = Mass volume consisting of entire medium volume,
- N = Number of uniform smaller partial volumes consisting of partial media volumes (= constant),
- $\boldsymbol{\varPhi}$ = Media porosity.

위의 이론적 과정을 Excel Programme으로 작성하 여 *N=?*, *r=?*, *ζ=?* 의 값을 구하였고 이를 바탕으로 Fractal 분열 차원화 값 *D*를 구하였다. 실험과정에서 도출된 *N*, *r*, *m* 값을 사용하여 토양 및 상토의 공극 크기(*P*)의 분포를 산출하였다.

임의 크기(**y**)의 공극이 매질내에서 발생할 확률 $w(\mathbf{\nu})$ 은 아래의 식으로 나타나는 것으로 증명되었다 (Hunt, 2004).

$$\begin{bmatrix} w(\boldsymbol{\nu}) \end{bmatrix} d\boldsymbol{\gamma} = \begin{bmatrix} (\frac{3-D}{\boldsymbol{\nu}_M^{(3-D)}}) \times \boldsymbol{\nu}^{(-(1+D))} \end{bmatrix} d\boldsymbol{\nu},$$
$$\boldsymbol{\nu}_M = \max \text{ imumporesize}(\boldsymbol{\mu}M)$$

따라서 위의 식의 양변의 d**y**을 나누어 없애고 **y**에 관 하여 공극크기 분포를 구할 수 있다.

위의 작성한 공극분석 프로그램(Excel)을 이용 실제 공극분포를 산출하기 위하여 상토는 100 mL 짜리 아 크릴 원통을 제작하여 아래 Table 1에 제시된 구성 원료의 비율로 섞은 10종류를 사용하였으며 토양시료 는 사양토에서 콩과 벼가 재배된 미니 라이시메타내 표토를 2-inch 코어(100 mL)를 이용하여 각각 2개씩 채취하여 분석하였다.

다공매질에 수분이 침투할 때와 반대로 빠져 나가 면서 건조될 때 이력현상에 의한 토양구조 변이가 일 어나기 때문에 이런 면을 감안하여 공극구조 실험을 할 때, 수분을 계속 넣어면서 공극을 채우는 방법과 시료가 포화되었을 때 다시 역으로 말려나가는 이중

Soil (Sand	y loam)	Bed media A				Bed media B						
Types	Sampled layer	Bulk density (g/cm ³)	Types	Component ratio(%)		Bulk	Types	Component ratio(%)		Bulk density		
				Со	Ze	Pe^{\dagger}	density		Co	Ze	Pe^{\dagger}	(g/cm^3)
Rice 1	Top 10 cm	1.303	A1	60	30	10	0.433	B1	80	10	10	0.203
Rice 2	Top 10 cm	1.288	A2	60	20	20	0.318	B2	70	10	20	0.205
Soy. 1	Top 10 cm	1.323	A3	60	15	25	0.307	B3	60	15	25	0.334
Soy. 2	Top 10 cm	1.404	A4	60	10	30	0.210	B4	50	20	30	0.384
			A5	60	5	35	0.178	B5	40	25	35	0.355

Table 1. Tested porous media for the analysis of pore size distribution.

[†] Soy.=Soybean, Co = Cocopeat, Ze = Zeolite, Pe = Perlite.

실험을 하였다. 다공질 매질의 공극분포 측정원리는 수분함량이 가장 작은 공극으로부터 현재의 가장 큰 공극까지 물이 순차적으로 채워진다고 가정하였으며, 아크릴 원통과 토양 코어(2")의 수분을 실온에서 풍 건시켜 어느 정도 말린 후에 그 수분을 초기수분(⊿ **θ**)으로 시작하여 추가로 일정수분(**θ**₀)을 채워 나가 면서 수분함량을 정량하였다. 그에 따라서 해당하는 수분량이 점진적으로 보다 큰 공극을 채워 나가며 가 장 큰 공극이 물로 채워지면 포화(공극률, ∅)되고 그 이상 물이 채워지지 않는다고 가정하였다. 이와 더불 어 역으로 포화된 매질을 순차적으로 계속 말려 나가 면 큰 공극부터 빠져 나가 면서 물이 점점 보다 작은 공극에 남게 되고 실온에서 풍건된남은 잔효수분(최 종수분, ❸m)은 104℃ 건조기에서 완전히 말려 전체 포화수분량, 즉 Porosity를 구하였다. 이 실험과정을 거쳐 얻은 자료를 가지고, Table 2에서 보듯이 위 RS 프랙탈 모델에서 제시한 N, r 값을 시행착오법으로 구한 후, 프랙탈 차원 값 D를 구하고, 그 다음에 위에 서 제시한 공극크기 발생확률 W(v)) 식에 이들 값을 대입하여 공극크기 분포를 구하였다.

결과 및 고찰

Table 3에 공극 측정에 사용된 다공질 매체들의 프 랙탈 차원 분열 분석을 통하여 얻은 차원 구성 변수 (Parameter)들에 대한 값을 제시하였다.

이들 변수들의 분포를 보면, 아래 Fig 1에 나타났듯 이 프랙탈차원(D)값과 시험된 다공매질체의 공극률 (**0**)과는 반비례 관계에 있으며 D값은 3보다 작게 나 타나고 있다. RS-Model(Sposito et al., 1991)도 D(3 임을 제시하고 있다. 공극률이 작은 토양(사양토)의 D값은 2.951~2.958의 값에 있고 공극률이 큰 상토(A, B 모두)는 2.801~2.884의 범위로 나타났다. 공극분석 시 나타난 N과 r값의 관계를 보면, N값이 커지면 r값 은 작아지고 N값이 작아지면 r값은 커지는 서로 반비 례 관계를 나타내고 있다(Fig. 2). 이러한 N과 r의 관 계로부터 포장토양, 상토의 공극구조의 얼개를 유추 할 수 있다.

Table 4, 5에서 N값이 큰 포장 토양(사양토)은 공극 분포의 범위가 넓어지고 상토보다는 최대공극은 더 크게 나타나고 있으나, 전체 공극의 평균 크기는 작 아, 상대적으로 소공극의 분포가 많아지고 결과적으 로 분포된 전 공극의 평균크기는 상토보다 작은 값을 보여주고 있는 데, 이는 포장토양이 상토보다 소공극 이 상대적으로 많이 분포하고 있음을 유추할 수 있다. 이 실험을 통하여 얻은 정량화된 공극분포 자료로 포장토양과 상토의 보수력의 특성을 규명할 수 있다. 상토의 보수력은 일반 포장토양과 매우 다르고 이를 규명하기 위해서는 우선 보수력과 수분장력(Water suction pressure) 및 공극분포와의 관계를 명확히 밝 혀야 한다. 우선, 일반토양(양토)과 상토와의 수분특 성곡선을 비교하면 다음 Fig. 3와 같다. Fig. 3에서 보 듯이 상토는 일반토양에 비해 수분장력 상승에 따른 수분감소가 급격하게 일어나고 일반토양에서 한발을 받는 수준인 1.0 bar까지 올라가면 상토는 물량의 감 소 추세로 봐서 보유된 절대물량이 매우 낮게 떨어질 것이다. 이러한 관계를 공극크기의 분포로 설명될 수 있고, 이를 이번 실험을 통해 공극크기 분포를 정량화 시킴으로써 해명할 수 있게 되었다.

Arya (1981), Saxton (1986) 등이 토양수분장력특성 곡선 분석에 의하여 토양수분함량과 수분장력(Water suction pressure), 공극분포 특성을 밝혔다. 이 방법은 포화된 토양을 가압상자(Pressure chamber)에 넣어 가한 압력과 매질 공극내 수분이 평형상태에 이르렀 을 때 수분량을 정량해야 함으로 비용이 많이 들고 시간도 많이 소모될 뿐만 아니라 위험성이 큰 단점이 있다. 또한 이법으로는 최대 공극과 최소 공극의 범위 를 결정하기가 매우 어렵고 공극과 공극 사이를 측정 하는 미세압력 증분을 가해야 저자들이 분석한 결정 된 공극의 미세간격 분포를 얻을 수 있을 것이다. 이 렇게 됨으로써 결정된 공극분포 값들의 자료도 다분 히 Tabular Discrete한 분포를 갖지 않을 수 없다.

	0.5060								
D 1'			a 1						
Pore vol. 1	ncrement	Мала	Cumulate						
Watting	Dervice of	Mean	pore vol.						
vetting	Drying		%						
0.0742	0.0065	0.0404	0.0404						
0.0118	0.0006	0.0062	0.0466						
0.0116	0.0005	0.0061	0.0526						
0.0109	0.0006	0.0057	0.0584						
0.0105	0.0009	0.0057	0.0641						
0.0143	0.0015	0.0079	0.0720						
0.0143	0.0023	0.0083	0.0803						
0.0413	0.0041	0.0227	0.1030						
0.0686	0.0257	0.0471	0.1501						
0.0463	0.0124	0.0294	0.1795						
0.0171	0.0225	0.0198	0.1993						
0.0146	0.0343	0.0244	0.2237						
0.0085	0.1327	0.0706	0.2943						
0.0092	0.0799	0.0446	0.3389						
0.0368	0.0673	0.0521	0.3909						
0.1105	0.1196	0.1151	0.5060						
0.501	0.511	0.506							
n=	16								
/m=	0.494								
P (m-1)=	0.506								
Tau=	0.043	0.043117767	2.26534E-05						
	33								
N—	55								
=	0.307								
- =)=	0.307 2.963								
- =)= ₽₀= Φ	0.307 2.963 0.506	0.506	0.506		0.33333				
=)= ₽0= Φ ₽N= Φ /N	0.307 2.963 0.506 4.12E-16	0.506 6.36E-06	0.506 0.000193		0.33333				
$\mathbf{P} = \mathbf{P} + \mathbf{P} + \mathbf{P} = \mathbf{P} + $	0.307 2.963 0.506 4.12E-16	0.506 6.36E-06 ated pore %	0.506 0.000193		0.33333	Expected	Pore size		
$\mathbf{P} = \mathbf{p}$ $\mathbf{P} = \mathbf{p}$ $\mathbf{P} = \mathbf{p}$ $\mathbf{P} = \mathbf{p}$ $\mathbf{N} = \mathbf{p}$	0.307 2.963 0.506 4.12E-16 Accumula Measured	0.506 6.36E-06 ated pore % Theoretical	0.506 0.000193		0.33333	Expected Frequency	Pore size frequency	μM	
$\mathbf{P} = \mathbf{p}$ $\mathbf{P} = \mathbf{p}$ $\mathbf{P} = \mathbf{p}$ $\mathbf{P} = \mathbf{p}$ \mathbf{p} $\mathbf{P} = \mathbf{p}$ \mathbf{p}	0.307 2.963 0.506 4.12E-16 Accumula Measured 50.60	0.506 6.36E-06 ated pore % Theoretical 50.58	0.506 0.000193 4.12E-16	RM Pore=	0.33333 4.11828E-16	Expected Frequency 8.14E-16	Pore size frequency 5.95E-16	μM 2814.7	0.21889018
$\mathbf{P} = \mathbf{p}$ $\mathbf{P} = \mathbf{p}$ $\mathbf{P} = \mathbf{p}$ $\mathbf{P} = \mathbf{p}$ \mathbf{p}	0.307 2.963 0.506 4.12E-16 Accumula Measured 50.60 46.56	0.506 6.36E-06 ated pore % Theoretical 50.58 48.35	0.506 0.000193 4.12E-16 4.18E-15	RM Pore=	0.33333 4.11828E-16 3.76337E-15	Expected Frequency 8.14E-16 7.44E-15	Pore size frequency 5.95E-16 7.49E-15	μM 2814.7 1607.9	0.21889018 0.00055540
$\mathbf{P} = \mathbf{p} = \mathbf{p}$ $\mathbf{P} = $	0.307 2.963 0.506 4.12E-16 Accumula Measured 50.60 46.56 45.94	0.506 6.36E-06 ated pore % Theoretical 50.58 48.35 46.03	0.506 0.000193 4.12E-16 4.18E-15 4.23E-14	RM Pore=	0.33333 4.11828E-16 3.76337E-15 3.8154E-14	Expected Frequency 8.14E-16 7.44E-15 7.54E-14	Pore size frequency 5.95E-16 7.49E-15 7.57E-14	μM 2814.7 1607.9 897.1	0.21889018 0.00055540 0.24667325
$\mathbf{P} = \mathbf{p} = \mathbf{p}$ $\mathbf{P} = \mathbf{p} + \mathbf{p}$ $\mathbf{P} = \mathbf{p} / \mathbf{N}$ $\mathbf{p} = \mathbf{p} / \mathbf{n} / \mathbf{n} / \mathbf{n}$ $\mathbf{p} = \mathbf{p} / \mathbf{n} / \mathbf{n}$ $\mathbf{p} = \mathbf{p} / \mathbf{n} / \mathbf{n} / \mathbf{n}$ $\mathbf{p} = \mathbf{p} / \mathbf{n} / \mathbf{n} / \mathbf{n}$ $\mathbf{p} = \mathbf{p} / \mathbf{n} / \mathbf{n} / \mathbf{n}$ $\mathbf{p} = \mathbf{p} / \mathbf{n} / $	0.307 2.963 0.506 4.12E-16 Accumul: Measured 50.60 46.56 45.94 45.34	0.506 6.36E-06 ated pore % Theoretical 50.58 48.35 46.03 43.60	0.506 0.000193 4.12E-16 4.18E-15 4.23E-14 4.29E-13	RM Pore=	0.33333 4.11828E-16 3.76337E-15 3.8154E-14 3.86814E-13	Expected Frequency 8.14E-16 7.44E-15 7.54E-14 7.64E-13	Pore size frequency 5.95E-16 7.49E-15 7.57E-14 7.62E-13	μM 2814.7 1607.9 897.1 500.9	0.21889018 0.00055540 0.24667325 0.02529330
	0.307 2.963 0.506 4.12E-16 Accumul: Measured 50.60 46.56 45.94 45.34 44.76	0.506 6.36E-06 ated pore % Theoretical 50.58 48.35 46.03 43.60 41.06	0.506 0.000193 4.12E-16 4.18E-15 4.23E-14 4.29E-13 4.35E-12	RM Pore=	0.33333 4.11828E-16 3.76337E-15 3.8154E-14 3.86814E-13 3.92161E-12	Expected Frequency 8.14E-16 7.44E-15 7.54E-14 7.64E-13 7.75E-12	Pore size frequency 5.95E-16 7.49E-15 7.57E-14 7.62E-13 7.81E-12	μM 2814.7 1607.9 897.1 500.9 278.4	0.21889018 0.00055540 0.24667325 0.02529330 0.00054882
$P_{P} = 0$ $P_{P} = 0 / N$ $P_{P} = 0 / $	0.307 2.963 0.506 4.12E-16 Accumula Measured 50.60 46.56 45.94 45.34 44.76 44.19	0.506 6.36E-06 ated pore % Theoretical 50.58 48.35 46.03 43.60 41.06 38.40	0.506 0.000193 4.12E-16 4.18E-15 4.23E-14 4.29E-13 4.35E-12 4.41E-11	RM Pore=	0.33333 4.11828E-16 3.76337E-15 3.8154E-14 3.86814E-13 3.92161E-12 3.97581E-11	Expected Frequency 8.14E-16 7.44E-15 7.54E-14 7.64E-13 7.75E-12 7.86E-11	Pore size frequency 5.95E-16 7.49E-15 7.57E-14 7.62E-13 7.81E-12 7.87E-11	μM 2814.7 1607.9 897.1 500.9 278.4 155.4	0.21889018 0.00055540 0.24667325 0.02529330 0.00054882 0.00112859
$P_{N} = \phi$ $P_{N} = \phi / N$	0.307 2.963 0.506 4.12E-16 Accumula Measured 50.60 46.56 45.94 45.34 44.76 44.19 43.40	0.506 6.36E-06 ated pore % Theoretical 50.58 48.35 46.03 43.60 41.06 38.40 35.63	0.506 0.000193 4.12E-16 4.18E-15 4.23E-14 4.29E-13 4.35E-12 4.41E-11 4.47E-10	RM Pore=	0.33333 4.11828E-16 3.76337E-15 3.8154E-14 3.86814E-13 3.92161E-12 3.97581E-11 4.03077E-10	Expected Frequency 8.14E-16 7.44E-15 7.54E-14 7.64E-13 7.75E-12 7.86E-11 7.97E-10	Pore size frequency 5.95E-16 7.49E-15 7.57E-14 7.62E-13 7.81E-12 7.87E-11 7.97E-10	μM 2814.7 1607.9 897.1 500.9 278.4 155.4 86.6	0.21889018 0.00055540 0.24667325 0.02529330 0.00054882 0.00112859 0.00507973
$\mathbf{P} = \mathbf{P} = \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P}$	0.307 2.963 0.506 4.12E-16 Accumula Measured 50.60 46.56 45.94 45.34 44.76 44.19 43.40 42.57	0.506 6.36E-06 ated pore % Theoretical 50.58 48.35 46.03 43.60 41.06 38.40 35.63 32.73	0.506 0.000193 4.12E-16 4.18E-15 4.23E-14 4.29E-13 4.35E-12 4.41E-11 4.47E-10 4.53E-09	RM Pore=	0.33333 4.11828E-16 3.76337E-15 3.8154E-14 3.86814E-13 3.92161E-12 3.97581E-11 4.03077E-10 4.08649E-09	Expected Frequency 8.14E-16 7.44E-15 7.54E-14 7.64E-13 7.75E-12 7.86E-11 7.97E-10 8.08E-09	Pore size frequency 5.95E-16 7.49E-15 7.57E-14 7.62E-13 7.81E-12 7.87E-11 7.97E-10 8.07E-09	μM 2814.7 1607.9 897.1 500.9 278.4 155.4 86.6 48.3	0.21889018 0.00055540 0.24667325 0.02529330 0.00054882 0.00112859 0.00507973 0.07000414
$\mathbf{v} = \mathbf{p} + \mathbf{p} = \mathbf{p} + \mathbf{p} + \mathbf{p} = \mathbf{p} + \mathbf{p} + \mathbf{p} + \mathbf{p} = \mathbf{p} + $	0.307 2.963 0.506 4.12E-16 Accumula Measured 50.60 46.56 45.94 45.34 44.76 44.19 43.40 42.57 40.30	0.506 6.36E-06 ated pore % Theoretical 50.58 48.35 46.03 43.60 41.06 38.40 35.63 32.73 29.70	0.506 0.000193 4.12E-16 4.18E-15 4.23E-14 4.29E-13 4.35E-12 4.41E-11 4.47E-10 4.53E-09 4.60E-08	RM Pore=	0.33333 4.11828E-16 3.76337E-15 3.8154E-14 3.86814E-13 3.92161E-12 3.97581E-11 4.03077E-10 4.08649E-09 4.14298E-08	Expected Frequency 8.14E-16 7.44E-15 7.54E-14 7.64E-13 7.75E-12 7.86E-11 7.97E-10 8.08E-09 8.19E-08	Pore size frequency 5.95E-16 7.49E-15 7.57E-14 7.62E-13 7.81E-12 7.87E-11 7.97E-10 8.07E-09 8.19E-08	μM 2814.7 1607.9 897.1 500.9 278.4 155.4 86.6 48.3 26.9	0.21889018 0.00055540 0.24667325 0.02529330 0.00054882 0.00112859 0.00507973 0.07000414 0.00264104
$\mathbf{v} = \mathbf{p} + \mathbf{p} = \mathbf{p} + \mathbf{p} + \mathbf{p} = \mathbf{p} + $	0.307 2.963 0.506 4.12E-16 Accumul: Measured 50.60 46.56 45.94 45.34 44.76 44.19 43.40 42.57 40.30 35.59	0.506 6.36E-06 Atted pore % Theoretical 50.58 48.35 46.03 43.60 41.06 38.40 35.63 32.73 29.70 26.53	0.506 0.000193 4.12E-16 4.18E-15 4.23E-14 4.29E-13 4.35E-12 4.41E-11 4.47E-10 4.53E-09 4.60E-08 4.66E-07	RM Pore=	0.33333 4.11828E-16 3.76337E-15 3.8154E-14 3.86814E-13 3.92161E-12 3.97581E-11 4.03077E-10 4.08649E-09 4.14298E-08 4.20024E-07	Expected Frequency 8.14E-16 7.44E-15 7.54E-14 7.64E-13 7.75E-12 7.86E-11 7.97E-10 8.08E-09 8.19E-08 8.30E-07	Pore size frequency 5.95E-16 7.49E-15 7.57E-14 7.62E-13 7.81E-12 7.87E-11 7.97E-10 8.07E-09 8.19E-08 8.31E-07	µМ 2814.7 1607.9 897.1 500.9 278.4 155.4 86.6 48.3 26.9 15.0	0.21889018 0.00055540 0.2466732; 0.02529330 0.0005488; 0.00112859 0.0050797; 0.07000414 0.00264104 0.00090450
Po= Ø PN=Ø /N PN=Ø /N rementalp e unit % 4.04 0.62 0.61 0.57 0.57 0.79 0.83 2.27 4.71 2.94 1.98	0.307 2.963 0.506 4.12E-16 Accumul: Measured 50.60 46.56 45.94 45.34 44.76 44.19 43.40 42.57 40.30 35.59 32.65	0.506 6.36E-06 Atted pore % Theoretical 50.58 48.35 46.03 43.60 41.06 38.40 35.63 32.73 29.70 26.53 23.23	0.506 0.000193 4.12E-16 4.18E-15 4.23E-14 4.29E-13 4.35E-12 4.41E-11 4.47E-10 4.53E-09 4.60E-08 4.66E-07 4.72E-06	RM Pore=	0.33333 4.11828E-16 3.76337E-15 3.8154E-14 3.86814E-13 3.92161E-12 3.97581E-11 4.03077E-10 4.08649E-09 4.14298E-08 4.20024E-07 4.2583E-06	Expected Frequency 8.14E-16 7.44E-15 7.54E-14 7.64E-13 7.75E-12 7.86E-11 7.97E-10 8.08E-09 8.19E-08 8.30E-07 8.42E-06	Pore size frequency 5.95E-16 7.49E-15 7.57E-14 7.62E-13 7.81E-12 7.87E-11 7.97E-10 8.07E-09 8.19E-08 8.31E-07 8.52E-06	μM 2814.7 1607.9 897.1 500.9 278.4 155.4 86.6 48.3 26.9 15.0 8.3	0.21889018 0.00055540 0.2466732; 0.02529330 0.0005488; 0.00112859 0.0050797; 0.07000414 0.00264104 0.00090456 0.0010418;
Po= Ø PN= Ø /N PN= Ø /N e unit % 4.04 0.62 0.61 0.57 0.57 0.79 0.83 2.27 4.71 2.94 1.98 2.44	0.307 2.963 0.506 4.12E-16 Accumula Measured 50.60 46.56 45.94 45.34 44.76 44.19 43.40 42.57 40.30 35.59 32.65 30.67	0.506 6.36E-06 ated pore % Theoretical 50.58 48.35 46.03 43.60 41.06 38.40 35.63 32.73 29.70 26.53 23.23 19.77	0.506 0.000193 4.12E-16 4.18E-15 4.23E-14 4.29E-13 4.35E-12 4.41E-11 4.47E-10 4.53E-09 4.60E-08 4.66E-07 4.72E-06 4.79E-05	RM Pore=	0.33333 4.11828E-16 3.76337E-15 3.8154E-14 3.86814E-13 3.92161E-12 3.97581E-11 4.03077E-10 4.08649E-09 4.14298E-08 4.20024E-07 4.2583E-06 4.31717E-05	Expected Frequency 8.14E-16 7.44E-15 7.54E-14 7.64E-13 7.75E-12 7.86E-11 7.97E-10 8.08E-09 8.19E-08 8.30E-07 8.42E-06 8.53E-05	Pore size frequency 5.95E-16 7.49E-15 7.57E-14 7.62E-13 7.81E-12 7.87E-11 7.97E-10 8.07E-09 8.19E-08 8.31E-07 8.52E-06 8.50E-05	μM 2814.7 1607.9 897.1 500.9 278.4 155.4 86.6 48.3 26.9 15.0 8.3 4.7	0.21889013 0.00055544 0.24667323 0.02529330 0.00054883 0.00112859 0.00507973 0.07000414 0.00264104 0.00090450 0.00104183 0.00313360
$\mathbf{v} = \mathbf{p} + \mathbf{p} = \mathbf{p} = \mathbf{p} + \mathbf{p} = \mathbf{p} = \mathbf{p} = \mathbf{p} + \mathbf{p} = $	0.307 2.963 0.506 4.12E-16 Accumula Measured 50.60 46.56 45.94 45.34 44.76 44.19 43.40 42.57 40.30 35.59 32.65 30.67 28.23	0.506 6.36E-06 Theoretical 50.58 48.35 46.03 43.60 41.06 38.40 35.63 32.73 29.70 26.53 23.23 19.77 16.16	0.506 0.000193 4.12E-16 4.18E-15 4.23E-14 4.29E-13 4.35E-12 4.41E-11 4.47E-10 4.53E-09 4.60E-08 4.66E-07 4.72E-06 4.79E-05 4.86E-04	RM Pore=	0.33333 4.11828E-16 3.76337E-15 3.8154E-14 3.86814E-13 3.92161E-12 3.97581E-11 4.03077E-10 4.08649E-09 4.14298E-08 4.20024E-07 4.2583E-06 4.31717E-05 0.000437684	Expected Frequency 8.14E-16 7.44E-15 7.54E-14 7.64E-13 7.75E-12 7.86E-11 7.97E-10 8.08E-09 8.19E-08 8.30E-07 8.42E-06 8.53E-05 8.65E-04	Pore size frequency 5.95E-16 7.49E-15 7.57E-14 7.62E-13 7.81E-12 7.87E-11 7.97E-10 8.07E-09 8.19E-08 8.31E-07 8.52E-06 8.50E-05 8.65E-04	μM 2814.7 1607.9 897.1 500.9 278.4 155.4 86.6 48.3 26.9 15.0 8.3 4.7 2.6	0.21889018 0.00055544 0.24667323 0.02529330 0.00054883 0.00112859 0.00507973 0.07000414 0.00264104 0.00090456 0.00104183 0.000104183 0.000313366 0.00030824
$\mathbf{v} = \mathbf{p} + \mathbf{p} + \mathbf{p} = \mathbf{p} + \mathbf{p} + \mathbf{p} = \mathbf{p} + \mathbf{p} + \mathbf{p} + \mathbf{p} = \mathbf{p} + \mathbf{p} + \mathbf{p} + \mathbf{p} + \mathbf{p} = \mathbf{p} + $	0.307 2.963 0.506 4.12E-16 Accumula Measured 50.60 46.56 45.94 45.34 44.76 44.19 43.40 42.57 40.30 35.59 32.65 30.67 28.23 21.17	0.506 6.36E-06 Theoretical 50.58 48.35 46.03 43.60 41.06 38.40 35.63 32.73 29.70 26.53 23.23 19.77 16.16 12.38	0.506 0.000193 4.12E-16 4.18E-15 4.23E-14 4.29E-13 4.35E-12 4.41E-11 4.47E-10 4.53E-09 4.60E-08 4.66E-07 4.72E-06 4.79E-05 4.86E-04 4.92E-03	RM Pore=	0.33333 4.11828E-16 3.76337E-15 3.8154E-14 3.86814E-13 3.92161E-12 3.97581E-11 4.03077E-10 4.08649E-09 4.14298E-08 4.20024E-07 4.2583E-06 4.31717E-05 0.000437684 0.004437343	Expected Frequency 8.14E-16 7.44E-15 7.54E-14 7.64E-13 7.75E-12 7.86E-11 7.97E-10 8.08E-09 8.19E-08 8.30E-07 8.42E-06 8.53E-05 8.65E-04 8.77E-03	Pore size frequency 5.95E-16 7.49E-15 7.57E-14 7.62E-13 7.81E-12 7.87E-11 7.97E-10 8.07E-09 8.19E-08 8.31E-07 8.52E-06 8.50E-05 8.65E-04 8.78E-03	µМ 2814.7 1607.9 897.1 500.9 278.4 155.4 86.6 48.3 26.9 15.0 8.3 4.7 2.6 1.4	0.21889018 0.00055540 0.24667325 0.02529330 0.00054882 0.00507975 0.07000414 0.00264104 0.00090456 0.00104185 0.000104185 0.000104185 0.000104185 0.000310360 0.00030824 0.00095635
$\mathbf{v} = \mathbf{p} + \mathbf{p} = \mathbf{p} + \mathbf{p} = \mathbf{p} + \mathbf{p} = \mathbf{p} + \mathbf{p} + \mathbf{p} + \mathbf{p} = \mathbf{p} + \mathbf{p} + \mathbf{p} + \mathbf{p} + \mathbf{p} = \mathbf{p} + $	0.307 2.963 0.506 4.12E-16 Accumula Measured 50.60 46.56 45.94 45.34 44.76 44.19 43.40 42.57 40.30 35.59 32.65 30.67 28.23 21.17 16.71	0.506 6.36E-06 Theoretical 50.58 48.35 46.03 43.60 41.06 38.40 35.63 32.73 29.70 26.53 23.23 19.77 16.16 12.38 8.43	0.506 0.000193 4.12E-16 4.18E-15 4.23E-14 4.29E-13 4.35E-12 4.41E-11 4.47E-10 4.53E-09 4.60E-08 4.66E-07 4.72E-06 4.79E-05 4.86E-04 4.92E-03 4.99E-02	RM Pore=	0.33333 4.11828E-16 3.76337E-15 3.8154E-14 3.86814E-13 3.92161E-12 3.97581E-11 4.03077E-10 4.08649E-09 4.14298E-08 4.20024E-07 4.2583E-06 4.31717E-05 0.000437684 0.004437343 0.0449868	Expected Frequency 8.14E-16 7.44E-15 7.54E-14 7.64E-13 7.75E-12 7.86E-11 7.97E-10 8.08E-09 8.19E-08 8.30E-07 8.42E-06 8.53E-05 8.65E-04 8.77E-03 8.89E-02	Pore size frequency 5.95E-16 7.49E-15 7.57E-14 7.62E-13 7.81E-12 7.87E-11 7.97E-10 8.07E-09 8.19E-08 8.31E-07 8.52E-06 8.50E-05 8.65E-04 8.78E-03 8.89E-02	µМ 2814.7 1607.9 897.1 500.9 278.4 155.4 86.6 48.3 26.9 15.0 8.3 4.7 2.6 1.4 0.8	0.21889018 0.00055540 0.24667322 0.02529330 0.00054882 0.00507973 0.07000414 0.00264104 0.00090456 0.00104183 0.00030824 0.00030824 0.00095633 0.00095633
$\mathbf{v} = \mathbf{p} = \mathbf{p} = \mathbf{p} = \mathbf{p} = \mathbf{p} + $	N lp	0.307 2.963 0.506 V 4.12E-16 P Accumula Measured 50.60 46.56 45.94 45.34 44.76 44.19 43.40 42.57 40.30 35.59 32.65 30.67 28.23	$\begin{array}{c ccccc} 0.307 \\ 2.963 \\ 0.506 \\ 0.506 \\ 0.506 \\ 0.506 \\ \hline 0.506 \\ 0.506 \\ \hline 0.5058 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 2. Specified experimental procedures based on the measured data.

Media types	Partial pores no. in pore size class (N)	Self-similarity ratio (<i>r</i>)	Fractal dimension (D)	Porosity (Ø)
Soybean 1(SL) [†]	26	0.332	2.958	0.501
Soybean 2(SL)	32	0.310	2.958	0.470
Rice 1 (SL)	26	0.331	2.951	0.508
Rice 2 (SL)	32	0.309	2.953	0.514
Bed media A1	21	0.348	2.884	0.739
Bed media A2	17	0.373	2.872	0.716
Bed media A3	12	0.418	2.848	0.734
Bed media A4	13	0.410	2.873	0.713
Bed media A5	8	0.476	2.801	0.771
Bed media B1	19	0.354	2.837	0.845
Bed media B2	18	0.359	2.819	0.844
Bed media B3	20	0.350	2.855	0.782
Bed media B4	20	0.353	2.874	0.694
Red media B5	15	0.386	2.846	0.769

Table 3. Analyzed component parameters for fractal dimensionality of used.

[†] SL = Sandy loam soil

Fig. 1. Change in media porosity with fractal dimensionality.

Fig. 3. Water content-Suction pressure relationship of soil and bed media.

공극분포 값들이 미세하게 결정되어야만 Hartmann (2001)이 분석한 공극내 물질이동에 중요한 변수인 공극구조의 꼬임성(Tortuosity, **r**)값과 포화수리전도도 (K(**θ**_s))값을 결정할 수 있을 것이다(농업과학기술원,

Fig. 2. Relationship between self-similarity (*r*) and number of smaller partial volumes in fragmented media volume size class (*N*).

2001). 또한 위의 프랙탈 모델 분석기법은 이를 통하 여 얻은 미세한 공극분포 자료를 가지고 다공매질의 포화수리전도도, 토양수분장력특성을 역 추정할 수도 있다(Riew et al., 1991; Tyler et al., 1989).

실험 다공성 매체 14종류 가운데서 대표되는 일반 토양 콩1과 상토 B1의 공극크기 분포를 Table 5에 제 시하였다. 상토의 쉽게 이용되는 유효수분 범위는 포 화수분(Suction pressure 1kPa: 해당하는 공극크기 반 지름 r_D =147.8 μ M)에서 쉽게 이용할 수 있는 수분 (Suction pressure 5kPa: 해당하는 공극크기 반지름 r_D =29.5 μ M)의 범위에 있고(농업과학기술원, 2001), 일반토양의 쉽게 이용되는 유효수분 범위는 포화수분 (Suction pressure 1kPa: 해당하는 공극크기 반지름 r_D =147.8 μ M)에서 생육장애를 받기 시작하는 수분 (Suction pressure 100kPa: 해당하는 공극크기 반지름 r_D =1.5 μ M)의 범위에 있다(농촌진흥청, 김, 2003).

Table 4. Change in	the size of porou	s raun (part) for tesu	tu materiai meuia.			
		Rice 1	Rice 2	Soybean 1	Soybean 2	
	Max	912.4	1405.2	2801.2	1368.4	
Field soil	Min	0.448	0.441	0.431	0.432	
	Ave	0.497	0.484	0.476	0.473	
		A1	A2	A3	A4	A5
	Max	536.5	98.9	121.6	101.5	32.5
Bed media A	Min	0.0002	0.535	0.004	0.549	0.618
	Ave	0.0003	0.600	0.007	0.629	0.728
		B1	B2	B3	B4	B5
	Max	203.6	113.6	130.3	75.5	83.7
Bed medial B	Min	0.541	0.559	0.544	0.544	0.562
	Ave	0.610	0.632	0.613	0.616	0.639

Table 4. Change in the size of porous radii (µM) for tested material media.

Table 5. Exampled tablet for pore size distribution of representative two media.

Suction (kPa)	Radius (µM)	Field soil soybean 1 $r_D (\mu M)$		Frequency	Bed me r _D (µ	Frequency	
1	147.8		2801.202	7.72E-14	1kPa	597.541	5.25E-09
5	29.5		513.899	5.90E-13	5kPa	47.371	3.01E-08
10	14.8		296.424	5.21E-12		28.822	2.03E-07
30	5.0	1kPa	172.812	4.40E-11		17.491	1.38E-06
50	2.4		100.153	3.82E-10		10.668	9.17E-06
100	1.4		58.130	3.29E-09	$30kPai(FC^{\dagger})$	6.491	6.17E-05
		5kPa	33.708	2.84E-08		3.950	0.000415
			19.545	2.46E-07		2.403	0.002795
			11.343	2.12E-06	100kPa	1.462	0.018802
		$30kPai(FC^{\dagger})$	6.553	1.86E-05		0.890	0.126522
			3.815	0.000158		0.541	0.851398
		100kPa	2.212	0.001365			
			1.282	0.01183			
			0.743	0.102337			
			0.431	0.884192			
			Mean 0.476	1.000		Mean 0.609	1.000
		Uniform	nity(%) 0.170		Uniform	nity(%) 0.914	

[†]FC=Field Capacity

Table 5의 공극크기의 분포를 보면 상토의 유효수분 은 빠르게 떨어지고, 평균 공극크기가 일반 토양보다 더 크게 나타나 물이 빠르게 소모될 수 있음을 보여 준다.

Fig. 4에서 시험된 전체 재료의 공극분포가 상토 A1, A2에서 확연히 달라지고 있는데 이는 Table 3에 서 보듯이 Self-similarity (r) 값이 A그룹내에서 보듯 이 상당히 낮아지는데 기인된다고 할 수 있으며 상토 에 Zeolite를 20% 이상 넣음으로써 그런 효과를 가져 오지 않았나 유추해 본다. Fig. 5에서 시험된 전 다공 매질(Porous media)의 공극분포 범위를 한눈에 볼 수 있으며 공극분포 범위를 횡선의 크기로 나타냈고 횡 선의 가운데 점은 그들 공극분포의 평균값을 말하며 이 점들은 가장 작은 한계 크기에 아주 가깝게 접근

Fig. 4. Probable frequency (f) of pore size (r_D) in used experiment media.

되어 있음을 알 수 있고 각 매질의 전체 공극량중 아 주 작은 공극들이 거의 대부분을 차지하고 있음을 추

Fig. 5. Distributed pore size range for each experimental porous media.

정할 수 있으며 이를 Table 5의 아주 낮은 Uniformity 계수 값으로도 인지할 수 있다. 이 Uniformity 계수 값이 일반토양은 0.170%, 상토는 0.914%로 일반토양의 공극분포가 작은 공극쪽으로 더 많이 편기되어 있음을 알 수 있다.

적 요

Riew 와 Sposito의 차원 분열 모델을 적용하여 토양 과 상토를 대상으로 다공성 매체의 공극 분포와 보수 력 비교를 시도하였다. 토양 시료는 라이시메터에서 2" 코아로 채취하였다. 상토 시료는 코코피트, 제올라 이트 및 펄라이트를 혼합하여 아크릴 코아(100 mL) 에 충진하여 조제하였다. 식 *D=log(N)/log(1/r)를* 포 함한 차원 분열 모델에 의한 계산 Excell 프로그램을 작성하고, 이에 의해 분획된 다공성 매질을 이루는 보 다 작은 크기(부피)의 매질 분획 상수인 *N* 값과 자기 유사 비율 *r* 값을 얻었다.

이에 의해 대상 토양과 상토의 공극 분포와 빈도에

대한 자료를 얻을 수 있었다. 그 결과 라이시메타 토 양은 상토 보다 더 넓은 공극 분포를 갖으며, 이에 비 해 평균 공극크기는 상토 보다 라이시메타 토양에서 적은 것으로 해석되었다. 또한 공극크기(7) 분포에 따 른 토양, 상토의 보수력은 토양은 상당한 단계의 토양 수분이 빠져 나갔을 때 포장용수량(FC, 30kPa) 상태 에 이르고, 상토는 비교적 적은 단계에서 포장용수량 에 이르는 것으로 나타났다.

인 용 문 헌

- Arya, L. M., and J. F. Paris. 1981. A physico-empirical model to predict the soil moisture characteristics from particle size distribution and bulk density data. SSSAJ 45:1023-1030.
- Hunt A. G. 2004. Percolative transport in fractal porous media. Chaos, Solitons and
- Fractals 19:309-325.
- Jens Feder. 1988. Fractals. Chapter 1; Introduction:1-5.
- Riew M., and G. Sposito. 1991a. Fractal fragmentation, soil porosity, and soil water

properties: I. Theory. SSSAJ 55:1231-1238.

- Riew, M., and G sposito. 1991b. Fractal fragmentation, soil porosity, and soil water retention: II. Applications. SSSAJ 55:1239-1244.
- Tyler, S. W., S. W. Wheatcraft. 1989. Application of fractal mathematics to soil water retention. SSSAJ 53:987-996.
- Saxton, K. E., W, j, Rawls, J. S. Romberger, and R. I. Papendick. 1986. Estimating generalized soil water characteristics from texture. SSSAJ 50:1031-1036.
- 김이열. 2003. 원예용 상토. 이론과 실제:163-169.
- 농업과학기술원. 2001. 상토의 물리성 및 생물성 분석법 개발. 상토의 표준분석법 설정을 위한 전문가 세미나:55-74.
- 농촌진흥청. 2003. 중견토양평가관리. 4. 토양수분. 2003년 농 촌진흥공무원 전문교육교재:51-46.