Soil Organic Carbon Dynamics in Korean Paddy Soils

우리나라 논 토양의 토양유기탄소 변동 특성

  • Jung, Won-Kyo (Soil Management Div., National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Sun-Kwan (Soil Management Div., National Institute of Agricultural Science and Technology, RDA)
  • 정원교 (농업과학기술원 농업환경부 토양관리과) ;
  • 김선관 (농업과학기술원 농업환경부 토양관리과)
  • Received : 2007.01.18
  • Accepted : 2007.02.05
  • Published : 2007.02.28

Abstract

Korean paddy soils have long been almost uniformly managed throughout the whole country with flooded, deep tillage, puddlling, transplanting, and uncovering after harvest. Management of soil organic carbon could be more important in the sources of green house gases. However, soil organic carbon dynamics were not been studied for Korean paddy soils. Therefore, we evaluated the changes in soil organic carbon (SOC) of paddy soils between 1999 and 2003 at the same locations nationwide except islands. Soil organic carbon tends to increase in Inceptisols, which is predominant soil order for Korean paddy soils, from 1999 to 2003. Soil organic carbon increases in topographically plain paddy soils was greater than in valley soils, and was considerably high in predominant types of paddy soils (i.e., well adapted paddy soils, sandy paddy soils, and poorly drained paddy soils) but low and stable in the saline paddy soils. We also found that clay paddy soils are greater in soil organic carbon than sandy paddy soils. Through this study, we concluded that a proper management of paddy soils could contribute to soil organic carbon storage, which imply that the Korean paddy soils could help to enhance carbon dioxide sequestration via soil organic matter into the soil.

지구온난화, 기후변화 및 온실가스 배출 및 저감기술에 관한 많은 연구가 수행되고 있으나, 토양 내 유기탄소의 축적을 통한 온실가스 배출억제에 대한 연구는 매우 미진하며, 특별히 우리나라 농경지의 주요 이용형태인 논토양에 대해서는 유기탄소의 축적량 산정을 포함한 변동 등에 대한 연구가 매우 미흡하다. 본 연구에서는 도서를 제외한 우리나라 전국적인 논 토양 유기탄소의 연차별 모니터링을 통하여 토양에서 유기탄소의 연차간 변동을 평가하였으며 토양의 생성학적, 물리적 특성에 따라 토양유기탄소의 변화에 대한 해석을 시도하였다. 연구결과, 토양 생성분류학적으로 우리나라의 주된 논토양인 Inceptisol 에서 토양유기탄소량이 1999년에 비하여 2003년에 증가하는 경향이었던 것으로 나타났으며, 논의 이용형태별로는 염해답이나 미숙답에서 보다 보통답, 사질답, 배수불량답에서 토양유기탄소가 증가하는 것으로 나타났다. 표토의 토성별로 양토에서 보다 미사 식양토 및 미사양토에서 유기탄소의 증가가 높게 나타났다. 지형적으로는 곡간지에서 보다 평탄지에서 토양유기탄소의 증가율이 높게 나타났다. 결론적으로, 본 연구의 결과를 통하여, 1999년 이후 논토양에서 토양유기탄소의 양이 증가하는 경향을 나타내고 있으며 ($+0.11g\;kg^{-1}yr^{-1}$) 이는 대기중의 이산화탄소를, 논 토양의 유기탄소 축적기능을 통해, 토양 중에 저장함으로써 논토양이 온실가스 흡수원으로서의 역할을 하는 것으로 해석할 수 있다.

Keywords

References

  1. Allen, L.H. Jr., S.L. Albrecht, K.J. Boote, J.M.G. Thomas, Y.C. Newman, and K.W. Skirvin. 2006. Soil Organic Carbon and Nitrogen Accumulation in Plots of Rhizoma Perennial Peanut and Bahiagrass Grown in Elevated Carbon Dioxide and Temperature. J. Environ. Qual. 2006;35:1405-1412 https://doi.org/10.2134/jeq2005.0156
  2. Cambardella, C.A. and H.W. Doran. 1996. Assessing soil quality by testing organic matter. p. 41-50. In Jerry M. Bogham et al. (ed.) Soil organic matter: Analysis and interpretation. SSSA Special publication No. 46. SSSA, Madison, WI, USA
  3. Esuola, A.G. and A. Weersink. 2006. Carbon Banks: An Efficient Means to Exchange Sequestered Carbon. J. Environ Qual. 35:1525-1532 https://doi.org/10.2134/jeq2005.0197
  4. Frenzluebbers, A.J. and J.L. Steiner. 2002. Climatic influences on soil organic carbon storage with no tillage. In Kimble et al. (ed.), Agricultural practices and policies for carbon sequestration in soil, Lewis Publ., Boca Raton, FL
  5. Guo, Y., P. Gong, R. Amundson, and Q. Yu. 2006. Analysis of Factors Controlling Soil Carbon in the Conterminous United States. Soil Sci. Soc. Am. J. 70:601-612 https://doi.org/10.2136/sssaj2005.0163
  6. Hooker, B. A., T.F. Morris, R.Peters, and Z.G. Cardon. 2005. Long term Effects of Tillage and Corn Stalk Return on Soil Carbon Dynamics. Soil Sci. Soc. Am. J. 69:188-196 https://doi.org/10.2136/sssaj2005.0188
  7. Jung, W.K. and Y.H. Kim. 2006. Soil organic carbon determination for calcareous soils. Korean J. Soil Sci. Fert. 39:396-402
  8. Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304:1623-1626 https://doi.org/10.1126/science.1097396
  9. Lal, R., J. Kimble, and R.F. Follett. 1997. Pedospheric processes and the carbon cycle. p. 1-8. In Rattan Lal et al. (ed.) Soil process and the carbon cycle. CRC Press. Boca Raton, FL, USA
  10. Lal, R., M. Griffin, J. Apt, L. Lave, M.G. Gorgan. 2004. Managing soil carbon. Science 304:393 https://doi.org/10.1126/science.1093079
  11. Machado, S., K. Rhinhart and S. Petrie. 2006. Long Term Cropping System Effects on Carbon Sequestration in Eastern Oregon. J Environ Qual. 35:1548-1553 https://doi.org/10.2134/jeq2005.0201
  12. NIAST (National Institute of Agricultural Science and Technology). 2000. Taxonomical classification of Korean soils. National Institute of Agricultural Science and Technology, Suwon, Korea
  13. Olness, A., D. Lopez, J. Cordes, C. Sweeney, N. Mattson, and W.B. Voorhees. 2002. Agricultural practices and policies for carbon sequestration in soil, Lewis Publ., Boca Raton, FL
  14. Parkin, T.B. and T.C. Kaspar. 2003. Temperature Controls on Diurnal Carbon Dioxide Flux: Implications for Estimating Soil Carbon Loss. Soil Sci. Soc. Am. J. 67:1763-1772 https://doi.org/10.2136/sssaj2003.1763
  15. Sainju, U.M., A. Lenssen, T. Caesar Tonthat, and J. Waddell. 2006. Tillage and Crop Rotation Effects on Dryland Soil and Residue Carbon and Nitrogen. Soil Sci. Soc. Am. J. 70:668-678 https://doi.org/10.2136/sssaj2005.0089
  16. Sherrod, L. A., G.A. Peterson, D.G. Westfall, and L.R. Ahuja. 2005. Soil Organic Carbon Pools After 12 Years in No-Till Dryland Agroecosystems. Soil Sci. Soc. Am. J. 69:1600-1608 https://doi.org/10.2136/sssaj2003.0266
  17. VandenBygaart, A. J. and B.D. Kay. 2004. Persistence of Soil Organic Carbon after Plowing a Long-Term No-Till Field in Southern Ontario, Canada. Soil Sci. Soc. Am. J. 68:1394-1402 https://doi.org/10.2136/sssaj2004.1394
  18. Wall, G.W., R.L. Garcia, B.A. Kimball, D.J. Hunsaker, P.J. Pinter Jr., S.P. Long, C.P. Osborne, D.L. Hendrix, F. Wechsung, G. Wechsung, S.W. Leavitt, R.L. LaMorte, and S.B. Idso. 2006. Interactive Effects of Elevated Carbon Dioxide and Drought on Wheat. Agron. J. 98:354-381 https://doi.org/10.2134/agronj2004.0089
  19. Weil, R.R. and F. Magdoff. 2004. Significance of soil organic matter to soil quality and health. In F. Magdoff and R.R. Weil (ed.). Soil organic matter in sustainable agriculture. CRC Press. Boca Raton, FL, USA
  20. Zach, A., H. Tiessen, and E. Noellemeyer. 2006. Carbon Turnover and Carbon-13 Natural Abundance under Land Use Change in Semiarid Savanna Soils of La Pampa, Argentina Soil Sci. Soc. Am. J. 70:1541-1546 https://doi.org/10.2136/sssaj2005.0119