References
- Baker, V.R. 2001. Water and the Martian landscape. Nature, 412, 228-236 https://doi.org/10.1038/35084172
- Bhandal, I.S., R.M. Hauptman, and J.M. Widholm. 1985. Trehalose as a cryoprotectant for the freeze preservation of carrot and tobacco cells. Plant Physiol., 78, 430-432 https://doi.org/10.1104/pp.78.2.430
- Block, W. 2002. Interactions of water, ice nucleators and desiccation in invertebrate cold survival. Eur. J. Entomol., 99, 259-266 https://doi.org/10.14411/eje.2002.035
- Bruni, F. and A.C. Leopold. 1991. Glassy state in soybean seeds: relevance to anhydrous biology. Plant Physiol., 96, 660-663 https://doi.org/10.1104/pp.96.2.660
- Chang, Y., R.E. Barker, and B.M. Reed. 2000. Cold acclimation improves recovery of cryopreserved grass (Zoysia and Lolium sp.). Cryo Lett., 21, 107-116
- Chen, L., A.L. DeVries, and C.-H. Cheng. 1997a. Convergent evolution of antifreeze glycoproteins in antarctic notothenioid fish and Arctic cod. Proc. Nat. Acad. Sci. USA, 94, 3817-3822 https://doi.org/10.1073/pnas.94.8.3817
- Chen, L., A.L. DeVries, and C.-H. Cheng. 1997b. Evolution of antifreeze glycoprotion gene from a trypasinogen gene in Antarctic notothenioid fish. Proc. Nat. Acad. Sci. USA, 94, 3811-3816 https://doi.org/10.1073/pnas.94.8.3811
- Chen, L., A.L. DeVries, and C.-H. Cheng. 1997. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc. Nat. Acad. Sci. USA, 87, 9265-9269
- Cheng, C.H. and L. Chen. 1999. Evolution of an antifreeze glycoprotein. Nature, 401, 443-444 https://doi.org/10.1038/46721
- Crowe, J.H., L.M. Crowe, and D. Chapman. 1984. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science, 223, 701-703 https://doi.org/10.1126/science.223.4637.701
- De Antoni, G.L., P. Peres, A. Abraham, and M.C. Anon. 1989. Trehalose, a cryoprotectant for Lactobaccillus bulgaricus. Cryobiology, 26, 149-153 https://doi.org/10.1016/0011-2240(89)90045-X
- Deming, J.W. and A.L. Huston. 2000. An oceanographic perspective on microbial life at low temperatures with implications for polar ecology, biotechnology and astrobiology. p. 149-160. In: Cellular Origins and life in Extreme Habitats. ed. by P. Seckbach. Kluwer, Dordrecht
- Deming, J.W. 2002. Psychrophiles and polar regions. Curr. Opin. Microbiol., 5(3), 301-309 https://doi.org/10.1016/S1369-5274(02)00329-6
- Devos, N., M. Ingouff, R. Loppes, and R.F. Matagne. 1998. Rubisco adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J. Phycol., 34, 655-660 https://doi.org/10.1046/j.1529-8817.1998.340655.x
- Dumet, D., W. Block, M.R. Worland, B.M. Reed, and E.E. Benson. 2000. Profiling cryopreservation protocols for Ribes ciliatum using differential scanning calorimetry. Cryo Lett., 21, 367-378
- Ekins, S., G.I. Murray, and G.M. Hawksworth. 1996. Ultrastructural and metabolic effects after vitrification of precision-cut rat liver slices with antifreeze proteins. Cryo Lett., 17, 157-164
-
El-Sakhs, S., S. Shimi, E.E. Benson, L. Newman, and A. Cuschieri. 1998. Physical observations on rapid freezing of cells to
$-40^{\circ}C$ using differential scanning calorimetry. Cryo Lett., 19, 159-170 - Elster, J. 2002. Ecological classification of terrestrial algae communities of polar environment. p. 303-326. In: GeoEcology of Antarctic Ice-Free Coastal Landscapes. eds. by L. Beyer and M. Bolter. Springer, Berlin
- Elster, J. and E.E. Benson. 2004. Life in the polar terrestrial environment with a focus on algae and cyanobacteria. p. 111-149, In: Life in the Frozen State. eds. by B. Fuller, N. Lane, and E.E. Benson. Taylor and Francis, London
- Fletcher, G.I., S.V. Goddard, and Y. Wu. 1999. Antifreeze proteins and their genes: From basic research to business opportunity. Chemtech, 30, 17-28
- Fogg, G.E. 1998. The Biology of Polar Habitats. Oxford Univ. Press, Oxford
- Fuller, B.J., N. Lane, and E.E. Benson. 2004. Life in the Frozen State. Taylor and Francis, London
- Gerday, C., M. Aittaleb, M. Bentahir, J.P. Chessa, P. Claverie, T. Collins, S. D'Amico, J. Dumont, G. Garsoux, D. Georlette, T. Lonhienne, M.A. Meuwis, and G. Feller. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol., 18(3), 103-107 https://doi.org/10.1016/S0167-7799(99)01413-4
- Gilichinsky, D.A., S. Wagener, and T.A. Visnivetskaya. 1995. Permafrost microbiology. Permafrost Periglacial Proc., 6, 281-291 https://doi.org/10.1002/ppp.3430060402
- Griffith, M. and K.V. Ewart. 1995. Antifreeze proteins and their potential use in frozen foods. Biotechnol. Adv., 13, 375-402 https://doi.org/10.1016/0734-9750(95)02001-J
- Howes, I., C. Howard-Williams, and R.D. Pridmore. 1993. Environmental control of microbial communities in the ponds of the McMurdo Ice Shelf, Antarctica. Arch. Hydrobiol., 127, 271-287
- Kang, J.S. and J.A. Raymond. 2004. Reduction of freezethaw- induced hemolysis of red blood cells by an algal ice-binding protein. Cryo. Lett., 25, 307-310
- Kappen, L. 1993. Lichens in the Antarctic region. p. 433- 490. In: Antarctic Microbiology. ed. by E.I. Friedman. Wiley Liss, New York
- Kirst, G.O. and C. Wiencke. 1995. Ecophysiology of polar algae. J. Phycol., 31, 181-199 https://doi.org/10.1111/j.0022-3646.1995.00181.x
- Knight, C.A. and A.L. DeVries. 1994. Effects of a polymeric, nonequilibrium “antifreeze” upon ice growth from water. J. Cryst. Growth, 143, 301-310 https://doi.org/10.1016/0022-0248(94)90071-X
- Knight, C.A., D. Wen, and R.A. Laurensen. 1995. Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology, 32, 23-34 https://doi.org/10.1006/cryo.1995.1002
- Kravchenko, S.I. and V. Sampson. 1998. Efficiency of the sucrose-containing solution on the cold preservation of whole liver. Cryo. Lett., 19, 231-236
- Lewis-Smith, R.I. 1997. Oases as centres of high diversity and dispersal in Antarctica. p. 119-128 In: Ecosystem processes in Antarctic ice-free landscapes. eds. by L. Howard-Williams, and I. Hawes. Balkema, Rotterdam
- Ling, H.U. and R.D. Seppelt. 1998. Snow algae of the Windmill Islands, continental Antarctica Chloromonas polyptera (Volvocales, Chlorophyta). Polar Biol., 20, 320-324 https://doi.org/10.1007/s003000050309
- Metz, J.G., P. Roessler, D. Facciotti, C. Levering, F. Dittrich, M. Lassner, R. Valentine, K. Lardizabalk, F. Domerque, A. Yamada, K. Yazawa, V. Knauf, and J. Browse. 2001. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 293, 290-293 https://doi.org/10.1126/science.1059593
- Montiel, P.O. 2000. Soluble carbohydrates (trehalose in particular) and cryoprotection in polar biota. Cryo. Lett., 21(2), 83-90
- Nichols, D.S., J. Olley, H. Garda, R.R. Brenner, and T.A. McMeekin. 2000. Effect of temperature and salinity stress on growth and lipid composition of Shewanella gelidimarina. Appl. Environ. Microbiol., 66, 2422-2429 https://doi.org/10.1128/AEM.66.6.2422-2429.2000
- Pham, L., R. Dahiya, and B. Rubinsky. 1999. An in vivo study of antifreeze protein adjuvant cryosurgery. Cryobiology, 38, 169-175 https://doi.org/10.1006/cryo.1999.2158
- Ramlov, H., D.A. Wharton, and P.W. Wilson. 1996. Recrystalization in a freezing tolerant Antarctic nematode, Panagrolaimus davidi, and an alpine weta, Hemideina maori (Orthoptera; Stenopelmatidae). Cryobiology, 33, 607-613 https://doi.org/10.1006/cryo.1996.0064
- Raymond, J.A. 2000. Distribution and partial characterization of ice-active molecules associated with sea-ice diatoms. Polar Biol., 23, 721-729 https://doi.org/10.1007/s003000000147
- Rudolph, A.S. and J.H. Crowe. 1995. Membrane stabilization during freezing: The role of two natural cryoprotectants trehalose and proline. Cryobiology, 22, 367-377 https://doi.org/10.1016/0011-2240(85)90184-1
- Russell, N.J. 1997. Psychrophilic bacteria-molecular adaptations of membrane lipids. Comp. Biochem. Physiol., 118(3), 489-493 https://doi.org/10.1016/S0300-9629(97)87354-9
- Siddiqui, K.S. and R. Cavicchioli. 2006. Cold-adapted enzymes. Annu. Rev. Biochem., 75, 403-33 https://doi.org/10.1146/annurev.biochem.75.103004.142723
- Storey, K. and J. Storey. 1992. Biochemical adaptations for winter survival in insects. p. 101-140. In: Advances in Low Temperature Biology. ed. by P. Steponkus. JAI Press, London
- Sun, W.Q. and A.C. Leopold. 1994a. The glassy state and seed storage stability: A viability equation analysis. Ann. Bot., 74, 601-604 https://doi.org/10.1006/anbo.1994.1160
- Sun, W.Q. and A.C. Leopold. 1994b. The role of sugar, vitrification and membrane phase transition in seed desiccation tolerance. Physiol. Plantarum, 90, 621-628 https://doi.org/10.1111/j.1399-3054.1994.tb02516.x
- Tang, E.P.Y., R. Tremblay, and W.F. Vincent. 1997. Cyanobacterial dominance of polar freshwater ecosystems: Are high-latitude mat-formers adapted to low temperature? J. Phycol., 33, 171-181 https://doi.org/10.1111/j.0022-3646.1997.00171.x
- Thomas, D.N. and G.S. Dieckmann. 2002. Antarctic sea icea habitat for extremophiles. Science, 295, 641-644 https://doi.org/10.1126/science.1063391
- Thomas, D.N., G. Kattner, R. Engbrodt, V. Giannelli, H. Kennedy, C. Haas, and G. Dieckmann. 2001. Dissolved organic matter in Antarctic sea ice. Ann. Glaciol., 33, 297-303 https://doi.org/10.3189/172756401781818338
- Thomashow, M.F. 2001. So What's new in the field of plant cold acclimation? Lots! Plant Physiol., 125(1), 89-93 https://doi.org/10.1104/pp.125.1.89
- Van Liere, L. and A.F. Walsby. 1982. Interactions of cyanobacteria with light. p. 9-45. In: The Biology of Cyanobacteria. eds. by N.G. Carr and B.A. Whitton. Blackwell, Oxford
- Vincent, W.F. 2000. Evolutionary origins of Antarctic microbiota: Invasion, selection and endemism. Antarct. Sci., 12(3), 374-385 https://doi.org/10.1017/S0954102000000420
- Vincent, W.F., C. Howard-Williams, and P.A. Broady. 1993. Microbial communities and processes in Antarctic flowing waters. p. 543-569. In: Antarctic Microbiology. ed. by E.I. Friedmann. Wiley-Liss, New York
- Walker, G. 2003. Snowball Earth, Bloomsbury, London. 269 p
- Wharton, D. and W. Block. 1997. Differential scanning calorimetry studies on an Antarctic nematode (Panagrolamus davidi) which survives intracellular freezing. Cryobiology, 34, 114-121 https://doi.org/10.1006/cryo.1996.1989
- Whitton, B.A. 1987. Survival and dormancy of blue-green algae. p. 109-167. In: Survival and Dormancy of Microorganisms. ed. by Y. Henis. Wiley, New York
- Wiedner, C. and B. Nixdorf. 1998. Success of chrysophytes, cryptophytes and dinoflagellates over blue-greens (cyanobacteria) during an extreme winter (1995/96) in eutrophic shallow lakes. Hydrobiologia, 369/370, 229-235 https://doi.org/10.1023/A:1017054011389
- Wiermann, R. and S. Gubatz. 1992. Pollen wall and sporopollenin. Int. Rev. Cytol., 140, 35-72 https://doi.org/10.1016/S0074-7696(08)61093-1
- Worland, M.R., W. Block, and H. Oldale. 1996. Ice nucleation activity in biological materials with examples from Antarctic plants. Cryo Lett., 17, 31-38
Cited by
- Osmotic stress and recovery in field populations ofZygnemasp. (Zygnematophyceae,Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation vol.89, pp.2, 2014, https://doi.org/10.1111/1574-6941.12288
- Analysis of Morphological Change of Polar Bacterium using Microfluidic Device with Temperature Gradient vol.29, pp.4, 2014, https://doi.org/10.7841/ksbbj.2014.29.4.278