DOI QR코드

DOI QR Code

Cryobiological Perspectives on the Cold Adaptation of Polar Organisms

극지 생물의 저온적응 기작과 저온 생물학적 응용 연구

  • 강성호 (한국해양연구원 부설 극지연구소 극지응용연구부) ;
  • 주형민 (한국해양연구원 부설 극지연구소 극지응용연구부) ;
  • 박승일 (한국해양연구원 부설 극지연구소 극지응용연구부) ;
  • 정웅식 (한국해양연구원 부설 극지연구소 극지응용연구부) ;
  • 홍성수 (한국해양연구원 부설 극지연구소 극지응용연구부) ;
  • 서기원 (한국해양연구원 부설 극지연구소 극지응용연구부) ;
  • 전미사 (한국해양연구원 부설 극지연구소 극지응용연구부) ;
  • 최한구 (한국해양연구원 부설 극지연구소 극지응용연구부) ;
  • 김학준 (한국해양연구원 부설 극지연구소 극지응용연구부)
  • Published : 2007.09.30

Abstract

The survival strategies of polar organisms at permanently or extremely cold temperatures and their application to cryobiology were reviewed here. In addition, ongoing studies on psychrophiles also were described. Psychrophiles are extremophiles that can grow and reproduce in cold temperatures, typically at -10 to $20^{\circ}C$. These organisms developed various mechanisms of adaptation to extremely cold environments. Polar organisms cope with these extreme physicochemical conditions using strategies such as avoidance, protection and partnership with other organisms. Understanding on the strategies adopted by polar organisms may provide insight on the physiological process that cells can go through during freezing. Cryopreservation may be able to take advantage of the findings described above. Currently, genomes of many cold-loving organisms have been sequenced and comparative genomics has revealed, at a molecular level, the characteristics of these organisms. The investigation of microorganisms on the polar glaciers may expand our understanding on the origin of life on Earth and other planets.

Keywords

References

  1. Baker, V.R. 2001. Water and the Martian landscape. Nature, 412, 228-236 https://doi.org/10.1038/35084172
  2. Bhandal, I.S., R.M. Hauptman, and J.M. Widholm. 1985. Trehalose as a cryoprotectant for the freeze preservation of carrot and tobacco cells. Plant Physiol., 78, 430-432 https://doi.org/10.1104/pp.78.2.430
  3. Block, W. 2002. Interactions of water, ice nucleators and desiccation in invertebrate cold survival. Eur. J. Entomol., 99, 259-266 https://doi.org/10.14411/eje.2002.035
  4. Bruni, F. and A.C. Leopold. 1991. Glassy state in soybean seeds: relevance to anhydrous biology. Plant Physiol., 96, 660-663 https://doi.org/10.1104/pp.96.2.660
  5. Chang, Y., R.E. Barker, and B.M. Reed. 2000. Cold acclimation improves recovery of cryopreserved grass (Zoysia and Lolium sp.). Cryo Lett., 21, 107-116
  6. Chen, L., A.L. DeVries, and C.-H. Cheng. 1997a. Convergent evolution of antifreeze glycoproteins in antarctic notothenioid fish and Arctic cod. Proc. Nat. Acad. Sci. USA, 94, 3817-3822 https://doi.org/10.1073/pnas.94.8.3817
  7. Chen, L., A.L. DeVries, and C.-H. Cheng. 1997b. Evolution of antifreeze glycoprotion gene from a trypasinogen gene in Antarctic notothenioid fish. Proc. Nat. Acad. Sci. USA, 94, 3811-3816 https://doi.org/10.1073/pnas.94.8.3811
  8. Chen, L., A.L. DeVries, and C.-H. Cheng. 1997. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc. Nat. Acad. Sci. USA, 87, 9265-9269
  9. Cheng, C.H. and L. Chen. 1999. Evolution of an antifreeze glycoprotein. Nature, 401, 443-444 https://doi.org/10.1038/46721
  10. Crowe, J.H., L.M. Crowe, and D. Chapman. 1984. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science, 223, 701-703 https://doi.org/10.1126/science.223.4637.701
  11. De Antoni, G.L., P. Peres, A. Abraham, and M.C. Anon. 1989. Trehalose, a cryoprotectant for Lactobaccillus bulgaricus. Cryobiology, 26, 149-153 https://doi.org/10.1016/0011-2240(89)90045-X
  12. Deming, J.W. and A.L. Huston. 2000. An oceanographic perspective on microbial life at low temperatures with implications for polar ecology, biotechnology and astrobiology. p. 149-160. In: Cellular Origins and life in Extreme Habitats. ed. by P. Seckbach. Kluwer, Dordrecht
  13. Deming, J.W. 2002. Psychrophiles and polar regions. Curr. Opin. Microbiol., 5(3), 301-309 https://doi.org/10.1016/S1369-5274(02)00329-6
  14. Devos, N., M. Ingouff, R. Loppes, and R.F. Matagne. 1998. Rubisco adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J. Phycol., 34, 655-660 https://doi.org/10.1046/j.1529-8817.1998.340655.x
  15. Dumet, D., W. Block, M.R. Worland, B.M. Reed, and E.E. Benson. 2000. Profiling cryopreservation protocols for Ribes ciliatum using differential scanning calorimetry. Cryo Lett., 21, 367-378
  16. Ekins, S., G.I. Murray, and G.M. Hawksworth. 1996. Ultrastructural and metabolic effects after vitrification of precision-cut rat liver slices with antifreeze proteins. Cryo Lett., 17, 157-164
  17. El-Sakhs, S., S. Shimi, E.E. Benson, L. Newman, and A. Cuschieri. 1998. Physical observations on rapid freezing of cells to $-40^{\circ}C$ using differential scanning calorimetry. Cryo Lett., 19, 159-170
  18. Elster, J. 2002. Ecological classification of terrestrial algae communities of polar environment. p. 303-326. In: GeoEcology of Antarctic Ice-Free Coastal Landscapes. eds. by L. Beyer and M. Bolter. Springer, Berlin
  19. Elster, J. and E.E. Benson. 2004. Life in the polar terrestrial environment with a focus on algae and cyanobacteria. p. 111-149, In: Life in the Frozen State. eds. by B. Fuller, N. Lane, and E.E. Benson. Taylor and Francis, London
  20. Fletcher, G.I., S.V. Goddard, and Y. Wu. 1999. Antifreeze proteins and their genes: From basic research to business opportunity. Chemtech, 30, 17-28
  21. Fogg, G.E. 1998. The Biology of Polar Habitats. Oxford Univ. Press, Oxford
  22. Fuller, B.J., N. Lane, and E.E. Benson. 2004. Life in the Frozen State. Taylor and Francis, London
  23. Gerday, C., M. Aittaleb, M. Bentahir, J.P. Chessa, P. Claverie, T. Collins, S. D'Amico, J. Dumont, G. Garsoux, D. Georlette, T. Lonhienne, M.A. Meuwis, and G. Feller. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol., 18(3), 103-107 https://doi.org/10.1016/S0167-7799(99)01413-4
  24. Gilichinsky, D.A., S. Wagener, and T.A. Visnivetskaya. 1995. Permafrost microbiology. Permafrost Periglacial Proc., 6, 281-291 https://doi.org/10.1002/ppp.3430060402
  25. Griffith, M. and K.V. Ewart. 1995. Antifreeze proteins and their potential use in frozen foods. Biotechnol. Adv., 13, 375-402 https://doi.org/10.1016/0734-9750(95)02001-J
  26. Howes, I., C. Howard-Williams, and R.D. Pridmore. 1993. Environmental control of microbial communities in the ponds of the McMurdo Ice Shelf, Antarctica. Arch. Hydrobiol., 127, 271-287
  27. Kang, J.S. and J.A. Raymond. 2004. Reduction of freezethaw- induced hemolysis of red blood cells by an algal ice-binding protein. Cryo. Lett., 25, 307-310
  28. Kappen, L. 1993. Lichens in the Antarctic region. p. 433- 490. In: Antarctic Microbiology. ed. by E.I. Friedman. Wiley Liss, New York
  29. Kirst, G.O. and C. Wiencke. 1995. Ecophysiology of polar algae. J. Phycol., 31, 181-199 https://doi.org/10.1111/j.0022-3646.1995.00181.x
  30. Knight, C.A. and A.L. DeVries. 1994. Effects of a polymeric, nonequilibrium “antifreeze” upon ice growth from water. J. Cryst. Growth, 143, 301-310 https://doi.org/10.1016/0022-0248(94)90071-X
  31. Knight, C.A., D. Wen, and R.A. Laurensen. 1995. Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology, 32, 23-34 https://doi.org/10.1006/cryo.1995.1002
  32. Kravchenko, S.I. and V. Sampson. 1998. Efficiency of the sucrose-containing solution on the cold preservation of whole liver. Cryo. Lett., 19, 231-236
  33. Lewis-Smith, R.I. 1997. Oases as centres of high diversity and dispersal in Antarctica. p. 119-128 In: Ecosystem processes in Antarctic ice-free landscapes. eds. by L. Howard-Williams, and I. Hawes. Balkema, Rotterdam
  34. Ling, H.U. and R.D. Seppelt. 1998. Snow algae of the Windmill Islands, continental Antarctica Chloromonas polyptera (Volvocales, Chlorophyta). Polar Biol., 20, 320-324 https://doi.org/10.1007/s003000050309
  35. Metz, J.G., P. Roessler, D. Facciotti, C. Levering, F. Dittrich, M. Lassner, R. Valentine, K. Lardizabalk, F. Domerque, A. Yamada, K. Yazawa, V. Knauf, and J. Browse. 2001. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 293, 290-293 https://doi.org/10.1126/science.1059593
  36. Montiel, P.O. 2000. Soluble carbohydrates (trehalose in particular) and cryoprotection in polar biota. Cryo. Lett., 21(2), 83-90
  37. Nichols, D.S., J. Olley, H. Garda, R.R. Brenner, and T.A. McMeekin. 2000. Effect of temperature and salinity stress on growth and lipid composition of Shewanella gelidimarina. Appl. Environ. Microbiol., 66, 2422-2429 https://doi.org/10.1128/AEM.66.6.2422-2429.2000
  38. Pham, L., R. Dahiya, and B. Rubinsky. 1999. An in vivo study of antifreeze protein adjuvant cryosurgery. Cryobiology, 38, 169-175 https://doi.org/10.1006/cryo.1999.2158
  39. Ramlov, H., D.A. Wharton, and P.W. Wilson. 1996. Recrystalization in a freezing tolerant Antarctic nematode, Panagrolaimus davidi, and an alpine weta, Hemideina maori (Orthoptera; Stenopelmatidae). Cryobiology, 33, 607-613 https://doi.org/10.1006/cryo.1996.0064
  40. Raymond, J.A. 2000. Distribution and partial characterization of ice-active molecules associated with sea-ice diatoms. Polar Biol., 23, 721-729 https://doi.org/10.1007/s003000000147
  41. Rudolph, A.S. and J.H. Crowe. 1995. Membrane stabilization during freezing: The role of two natural cryoprotectants trehalose and proline. Cryobiology, 22, 367-377 https://doi.org/10.1016/0011-2240(85)90184-1
  42. Russell, N.J. 1997. Psychrophilic bacteria-molecular adaptations of membrane lipids. Comp. Biochem. Physiol., 118(3), 489-493 https://doi.org/10.1016/S0300-9629(97)87354-9
  43. Siddiqui, K.S. and R. Cavicchioli. 2006. Cold-adapted enzymes. Annu. Rev. Biochem., 75, 403-33 https://doi.org/10.1146/annurev.biochem.75.103004.142723
  44. Storey, K. and J. Storey. 1992. Biochemical adaptations for winter survival in insects. p. 101-140. In: Advances in Low Temperature Biology. ed. by P. Steponkus. JAI Press, London
  45. Sun, W.Q. and A.C. Leopold. 1994a. The glassy state and seed storage stability: A viability equation analysis. Ann. Bot., 74, 601-604 https://doi.org/10.1006/anbo.1994.1160
  46. Sun, W.Q. and A.C. Leopold. 1994b. The role of sugar, vitrification and membrane phase transition in seed desiccation tolerance. Physiol. Plantarum, 90, 621-628 https://doi.org/10.1111/j.1399-3054.1994.tb02516.x
  47. Tang, E.P.Y., R. Tremblay, and W.F. Vincent. 1997. Cyanobacterial dominance of polar freshwater ecosystems: Are high-latitude mat-formers adapted to low temperature? J. Phycol., 33, 171-181 https://doi.org/10.1111/j.0022-3646.1997.00171.x
  48. Thomas, D.N. and G.S. Dieckmann. 2002. Antarctic sea icea habitat for extremophiles. Science, 295, 641-644 https://doi.org/10.1126/science.1063391
  49. Thomas, D.N., G. Kattner, R. Engbrodt, V. Giannelli, H. Kennedy, C. Haas, and G. Dieckmann. 2001. Dissolved organic matter in Antarctic sea ice. Ann. Glaciol., 33, 297-303 https://doi.org/10.3189/172756401781818338
  50. Thomashow, M.F. 2001. So What's new in the field of plant cold acclimation? Lots! Plant Physiol., 125(1), 89-93 https://doi.org/10.1104/pp.125.1.89
  51. Van Liere, L. and A.F. Walsby. 1982. Interactions of cyanobacteria with light. p. 9-45. In: The Biology of Cyanobacteria. eds. by N.G. Carr and B.A. Whitton. Blackwell, Oxford
  52. Vincent, W.F. 2000. Evolutionary origins of Antarctic microbiota: Invasion, selection and endemism. Antarct. Sci., 12(3), 374-385 https://doi.org/10.1017/S0954102000000420
  53. Vincent, W.F., C. Howard-Williams, and P.A. Broady. 1993. Microbial communities and processes in Antarctic flowing waters. p. 543-569. In: Antarctic Microbiology. ed. by E.I. Friedmann. Wiley-Liss, New York
  54. Walker, G. 2003. Snowball Earth, Bloomsbury, London. 269 p
  55. Wharton, D. and W. Block. 1997. Differential scanning calorimetry studies on an Antarctic nematode (Panagrolamus davidi) which survives intracellular freezing. Cryobiology, 34, 114-121 https://doi.org/10.1006/cryo.1996.1989
  56. Whitton, B.A. 1987. Survival and dormancy of blue-green algae. p. 109-167. In: Survival and Dormancy of Microorganisms. ed. by Y. Henis. Wiley, New York
  57. Wiedner, C. and B. Nixdorf. 1998. Success of chrysophytes, cryptophytes and dinoflagellates over blue-greens (cyanobacteria) during an extreme winter (1995/96) in eutrophic shallow lakes. Hydrobiologia, 369/370, 229-235 https://doi.org/10.1023/A:1017054011389
  58. Wiermann, R. and S. Gubatz. 1992. Pollen wall and sporopollenin. Int. Rev. Cytol., 140, 35-72 https://doi.org/10.1016/S0074-7696(08)61093-1
  59. Worland, M.R., W. Block, and H. Oldale. 1996. Ice nucleation activity in biological materials with examples from Antarctic plants. Cryo Lett., 17, 31-38

Cited by

  1. Osmotic stress and recovery in field populations ofZygnemasp. (Zygnematophyceae,Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation vol.89, pp.2, 2014, https://doi.org/10.1111/1574-6941.12288
  2. Analysis of Morphological Change of Polar Bacterium using Microfluidic Device with Temperature Gradient vol.29, pp.4, 2014, https://doi.org/10.7841/ksbbj.2014.29.4.278