DOI QR코드

DOI QR Code

Effect of High Temperature Degradation on Microstructure and High Temperature Mechanical Properties of Inconel 617

Inconel 617의 고온열화에 따른 미세구조 및 고온 기계적 특성

  • Jo, Tae-Sun (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Seung-Ho (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Gil-Su (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Se-Hoon (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Young-Do (Division of Materials Science and Engineering, Hanyang University)
  • 조태선 (한양대학교 신소재공학과) ;
  • 이승호 (한양대학교 신소재공학과) ;
  • 김길수 (한양대학교 신소재공학과) ;
  • 김세훈 (한양대학교 신소재공학과) ;
  • 김영도 (한양대학교 신소재공학과)
  • Published : 2007.05.27

Abstract

Inconel 617 is a candidate tube material for high temperature gas-cooled reactors(HTGR). The microstructure and mechanical properties of Inconel 617 were studied after exposure at high temperature($1050^{\circ}C$). The dominant oxide layer was Cr-oxide. The internal oxide and Cr-depleted region were observed below the Cr-oxide layer. The depth of Cr-depleted zone and internal oxide increased with exposure time. The major phases of carbides are $M_{23}C_6\;and\;M_6C$. The composition of $M_{23}C_6\;and\;M_6C$ were determined to be Cr-rich and Mo-rich, respectively. $M_6C$ carbide is more stable than $M_{23}C_6$ at high temperature. From the results of high temperature compression test, there were no significant changes in hardness and yield strength upon increasing exposure time.

Keywords

References

  1. K. Shigemitu, J. B. Newkirk, A. Ohtomo and Y. Saiga, Metall. Trans., 11, 1019 (1980) https://doi.org/10.1007/BF02654716
  2. W. L. Mankins, J. C. Hoster and T. H. Bassford, Metall. Trans., 5, 2579 (1974) https://doi.org/10.1007/BF02643879
  3. N. S. Cheruvu, Metall. Trans., 20A, 87 (1989)
  4. Z. Qu and K. H. Kuo, Metall. Trans., 12A, 1333 (1981)
  5. F. Schubert, Udo Bruch, R. Cook, H. Dichi, Philip .J. Ennis, W. Jakobeit, H . J. Penkalla, Nuclear Technology, 66, 227 (1984)
  6. M. Yamashita, U. K. Viswanathan, I. Yamamoto and T. Kobayashi, ISIJ International, 37, 1133 (1997) https://doi.org/10.2355/isijinternational.37.1133
  7. Tawancy HM, Abbas NM, Scr. Metall. Meter., 29, 689 (1993) https://doi.org/10.1016/0956-716X(93)90420-W
  8. Moon DP, Mater. Sci. Technol., 5, 754 (1998)
  9. Esmaeili S, Engler-Pinto Jr CC, llschner B, Rezai-Aria F, Scr. Metall. Mater., 32, 1777 (1995) https://doi.org/10.1016/0956-716X(95)00004-F
  10. T. Hirano, M. Okada, H. Araki, T. Noda, H. Yoshida and R. Watanabe, Metall. Trans., 12A, 451 (1981)
  11. C. T. Sims, N. S. Stoloff, W. C. Hagel, Superalloys , John Willey & Sons, 257 (1987)
  12. J.C.Kim, E.K.Shin, Y.K.Park, S.K.Choi, G.M.Kim, J. Corros, Sci. Soc. of Korea, 26, 245 (1997)
  13. H.M. Yun, P.J.Ennis, H. Nickel and H. Schuster, J. Nucl. Mater., 125, 258 (1984) https://doi.org/10.1016/0022-3115(84)90553-1
  14. T. Takahashi, J. Fujiwara, T. Matsushima, M. Kiyokawa, I. Morimoto and T. Watanabe, Trans. ISIJ, 18, 221 (1978)