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Abstract To achieve high resource utilization for multi-issue DSPs, production compiler
commonly includes variants of iterative modulo scheduling algorithm. However, excessive cyclic data
dependences, which exist in communication and media processing loops, unduly restrict modulo
scheduling freedom. As a result, replicated functional units in multi~issue DSPs are often
under-utilized. To address this resource under-utilization problem, our paper describes a novel
compiler preprocessing strategy for effective modulo scheduling. The preprocessing strategy proposed
capitalizes on two new transformations, which are referred to as cloning and dismantling. Our
preprocessing strategy has been validated by an implementation for StarCore SC140 DSP compiler.
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1. INTRODUCTION

As communication and media signal processing
applications are getting more complex, system

designers seek programm-able high performance fi
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compiler, software pipelining, high performance multi~issue DSP, iterative modulo

xed-point Digital Signal Processors (DSPs) as a fl
exible platform [1]. Recent muiti-issue high perfor-
mance DSPsV are designed to meet such demand
by supporting (1) multiple functional units, (2) ad-
vanced issue logic that allows a variable number of
instructions to be dispatched in parallel, and (3)
providing optimizing compilers that automatically
tune algorithms written in C for performance [2-6].

In particular, to exploit multiple functional units
available for mutli-issue DSPs, optimizing compilers
commonly use software pipelining strategy. Soft—
ware pipelining is a global loop scheduling concept

1) Dominant market players in multi-issue DSPs are ADI/INTEL,
Blackfin ADSP-BF53x, Motorola/Agere StarCore SC140, and
Texas Instruments TMS320C64x.
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that exploits instruction level parallelism across loop
iteration boundaries. Since the critical path for a
software pipelined loop will be shorter, resource
utilization can be drastically improved. For this
merit, production compilers commonly adopt variants
of iterative modulo scheduling pioneered by Rau
and Glaser [7]; for a detailed introduction, consult
[8]. Although existing iterative modulo scheduling
approaches are proven to be effective [3,59-12],
excessive cyclic data dependences, which are fre-
quently observed in communication and media
processing loops, unduly restrict modulo scheduling
freedom [13]. As a result, replicated functional units
in multi-issue DSPs are often left being unused.

To address resource under—utilization problem for
VLIW processors, Lavery and Hwu developed a
preprocessing  strategy, which uses loop-unrolling,
for IMPACT iterative modulo scheduler [14]. Sakar
complemented Lavery and Hwu research by
developing (1) a more detailed cost model that cal-
culates loop-unrolling factors and (2) code gener-
ation algorithms that generate more compact code
than unrofi-and-jam transformation [15]. However,
loop~unrolling based preprocessing strategy for
effective modulo scheduling can potentially incur
significant increase in both code size and register
pressure. Considering stringent constraints on both
memory and register file size for DSPs, loop-
unrolling based preprocessing pose tremendous
challenges for DSP compilers to implement.

To address the same resource under-utilization
problem for multi-issue DSPs, this paper presents
an alternative preprocessing strategy for effective
modulo scheduling, which capitalizes on two new
compiler transformations, referred to as cloning and
dismantling. Since these two transformations direc-
tly relax excessive cyclic data dependences with a
partial aid from unused functional resources, neither
code duplication nor additional hardware support are
required. Therefore, cloning and dismantling trans—
formations are easier for DSP compilers to imple-
ment, However, application of cloning and disman-
tling inevitably increases resource contention and
indiscreet application can potentially make overall
resource utilization even worse. Thus, the real
preprocessing challenge is how best to apply these

two transformations subjected to the constraint of
resource pressure increase. The proposed strategy
for effective modulo scheduling responds to this
challenge. To measure feasibility and effectiveness
of our strategy, StarCore SC140 processor [4,16] is
used as the representative for multi~issue DSPs.

2. PRELIMINARIES

2.1 8CG140 MULTI-ISSUE DSP ARCHITECTURE

The SC140 is a high performance general purpose
fixed point DSP core. It supports multi-issue func-
tionality consists of three main functional blocks,

1. Program Sequencer (PSEQ),

2. Data Arithmetic and Logic Unit (DALU), and

3. Address Arithmetic Unit (AAU). '

PSEQ performs
dispatch, and exception processing. To support high
computing needs, DALU has 4 units of ALU and
AAU has 2 units for address generation. To make

instruction fetch, instruction

all ALUs and AAUs operational at the same time,
sixteen 40-bit data registers (d0-dl5) and sixteen
32-bit address registers (10-rl5) are provided as
general purpose registers (GPR). The ALU has
three main components: multiply-accumulate (MAC)
unit, a bit field unit and eight data bus shifter/
limiters. AAU implements four types of arithmetic:
linear, modulo, multiple wrap-around modulo, and
reverse-carry.

A significant design point in SC140 is Variable
Length Execution Set (multi-issue). Most SC140
instructions are 16-bits wide and they can be
grouped into multi-issue packets of up to 128-bits.
This allows for multiple instructions to be issued
with reasonable instruction code density. In order to
keep dispatching one multi-issue packet per cycle,
the processor has 5-stages pipeline and the first 3
stages are dedicated for PSEQ. Therefore, most of
control-free ALU and AAU
delay of one clock cycle except AAU instructions

instructions require

that contain advanced addressing mode operation,
such as indexed addressing.

To saturate 4 units of ALU and 2 units of AAU
per cycle, compiler software piplines signal proces—
sing loop kernels with iterative modulo scheduling
algorithm described in [8].
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2.2 NOMENCLATURE: lterative Modulo Scheduling

Definition 1 A candidate loop for an iterative
modulo scheduler is the loop with branch-free
body? that can run in DSP hardware looping
mode {17].

Definition 2 Initiation Interval (II) of a candidate
loop is the rate at which new loop iteration can
be started.

Definition 3 Data Dependence Graph (DDG) of a
candidate loop is the graph that defines a partial
order, denoted by a tuple (latency /, iteration
difference @) between every two instructions in
the loop body.

Definition 4 A recurrence circuit is a data depen-
dence circuit that exists in a DDG, which is
formed from an instruction to an instance of
itself.

Definition 5 For a given recurrence circuit, ¢, 1,
Q

is defined as where re = sum of individual

iteration differences, @ and L. - sum of

individual latencies, ]i, existing in the recurrence
circuit.

Definition 6 Minimum Recurrence bound (RecMII)

is the maximum of all ¥~ which can meet the
deadlines imposed from all the recurrence circuits
existing in a candidate loop.

Definition 7 Minimum Resource bound (ResMII)
is the smallest I/ which can meet the total
resource requirements to complete one loop
iteration of a candidate loop.

Definition 8 Excessive RecMII (Ex-RecMIl) is the
difference between RecMII and ResMIL, iff RecMII
> ResMIL

Definition 9 Minimum Initiation Interval (MID) is

the maximum of RecMII and ResMIL

3. MOTIVATION: Excessive RecMII (Ex-RecMII)

According to our benchmark for SC140, various
loop kernels manifest that
(Ex-RecMI)

limiting factor that either fails candidate loops to be

signal processing

excessive RecMII is the dominant

2) Compiler performs if-conversion to allow more loops to be
modulo scheduled.

modulo scheduled or modulo schedules with
excessively large 7.

3.1 LOOP-CARRIED TRUE DEPENDENCE

As the first example of Ex-RecMIl, consider C
code fragment shown in Figure 1(a) that imple-
ments Fast Fourier Transformation (FFT) algorithm.
For the shaded candidate loop body in Figure 1(a),
compiler produces highly optimized assembly code
as shown in Figure 1(b), which is yet to be
modulo scheduled.

For iterative modulo scheduling, II of candidate
loop in Figure 1(b) is initially set equal to MIIL,
which is computed as follows. First, each iteration
of branch-free loop body shown in Figure 1(b)
requires 7 units of ALU and 6 units of AAU, and
S5C140 multi~issue DSP can supply at most 4 units

of ALU and 2 units of AAU per cycle. Thus,

7116
ResMII is 3, which is max(h‘l’h"). Second, this
body

recurrence

several data
According  to

candidate  loop contains

dependence circuits.

DEFINITION 6, RecMII is the maximum - of all
recurrence circuits, which is 6 for FFT and one
such circuit is depicted in Figure 2(a).3 Since MIL
is max(ResMII, RecMII), Il is initially set to 6 for
a modulo schedule.

For analysis, consider the loop-carried data de-
pendence in Figure 2(a). This dependence is true
since the value of induction variable rl in the 9"
instruction is referenced by the 1% instruction in
the subsequent loop iteration. In addition, depen-
dence chain from the 1% instruction down to the 9"
instruction is transitively true. Due to this cyclic
true dependence, FFT candidate loop fails to be
modulo scheduled since MII of 6 is the ratio which
can be achieved by local acyclic scheduling.

311 CLONING to relax Ex-RecMIl due to true

dependences

Since the recurrence circuit in Figure 2(a) is
formed with cyclic true dependence, Ex-RecMII of
FFT candidate loop deems irreducible. However,
careful analysis on this circuit leads us to observe

following:

3) The other RecMII circuit is omitted since the type of loop-carried
data dependence is same as that of the circuit in Figure 2(a).
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1. move.w {rl).d3

Load re_ac[m]fk] to 43

2. move.w {r6}+n3, dsd

Load twiddlelnl[j] to d4
and postincrement the array
index by 4 bytes

impy 44,d3,45

as <- twa 1 * re tw

4, move.w {r0),d6

Load im acim]lk] to d6

for (n=0; n<6; ntH} {
for {k=64; k<128 R++4) {

twa_1 = re_aciml [K]:
twa_2 = im_ac{m] [k}:
re_tw = twiddle[n] {j1:
I+
im
s
re_acml [kl = (twa_ltre tw) - (twa_2%im tw);
re_acim} [K} = re_acim] {X] >> 10;

im_acm] {k] = (twa_1%im tw) + (twa 2¥re tw);
im acin] {kK] = in acn] [K] >> 10:

W = twiddle[n] {3):

b
Py R

5. move.w {r3)+n3, a7

Load twiddle[n][j] to d7
And postincrement the array
index by 4 bytes

6. imac -a7,d6,d43

d5 <- 45 - (twa 2 * im tw)

7. sxt.1 45

d5[39:32] <- a5[31)

8. asrr #<10,d3

d3 <- {43 >> 10)

9. move.l &3,{rl)+

Store 45 to re aclm]lk] and
postincrement the array index
by 4 bytes

10 impy d4,d6,48

a8 <- twa 2 ¥ re tw

11. imac d7,d3,d8

48 <~ d8 + (twa_ 1 * im tw)

12. asrr #<10,48

d8 <- (d8 >> 10)

13, move.l 48,(r0)+

Store d8 to im ac{m}[k}] and
postincrement the axray index
by 4 bytes

B AAU instruction

E ALU instrucion

(b) An assembly code of figure (a)

——if~#= True Data Dependence,

+««ifj»  Anti Data Dependence

— =4 Quput Data Dependence

(a) A candidate loop from FFT

where /represants
latency and j represents
foop iteration difference

(¢) A simplified data dependence graph of

figure (b)

Figure 1 C Code fragment from FFT and corresponding loop body in SC140

@) insoetin

& 21
. ALU 3 tfra x1,r10
@ instruction -1 move.w #2,n0
i ] b 21
&
1. move.w (rl),d3
’
5l s |1. move.w (xi0)#n0,d3 J1e
8|3, impy d3,d4,ds g |. ! o
g~ g [3. impy  d3,d4,d5 { "
a6, imac ~d7,d6,d5 4 . ;
¢7. sxt.1 s §%l6. imac  -av,de,ds ot (7)
] [&]
Zls. asrr  #<10,d5 u ;' sxt.l ‘::10 a5 T
g H . asrr . L
§|9. move.l d5,(rl)+ 2 |o. move.1 ds,(rl)+ 4 e
8 kY
o V170
\\
{a) SC140 instructions before (b) SC140 instructions after o

cloning

cloning

Figure 2 RecMII=6 recurrence circuit of FFT candidate loop

—

. The loop-carried true dependence in Figure 2(a)

is an artifact from scheduling-insensitive addres—

sing mode optimization to reduce resource pre-

ssure on critical AAU units in SC140.
There

along this loop—carried true dependence.

When these two conditions are observed

is no memory (store-load) dependence

in a

given recurrence circuit, we find that loop-carried

true dependence edge can hbe safely removed by
introducing additional induction variable that clones
the behavior of an existing induction variable. As
an illustration, the loop-carried true dependence in
Figure 2(a) can be removed in following steps:

1. Allocate one additional register to replicate induc—
it at the loop

tion variable rl and initialize

preheader. For this step, assuming that rl0
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for (i=0; i<=bound; i++} {
L_sum = L mac(L_Round,pswV01d[i] ,psw@ntRc[]j]}:
L sum = L mac(L_ sum,psw¥0ld[-i] ,psw@ntRc{j]):
L_sum = L_mac{L_sum,pswPold{i],psw(ntRcSyd[jl):
L_sum = L_msu(l_sum,pswP0ld[i],SW MIN);
pewPHewr{i] = extract h{L sum}:

Load pswV0ld[i] to d8 and
postincrement the array
index by 2 bytes

1. imove.f (ril)+,ds

Load L ROUND, which is

2. imove.l #32768,d10 0x8000, to 410

di10 <~ di0 +

3. |mae (pawV01d[i]* pswQntRc31)

as,d5,d10

Load pswV0ld[-i} to d9 and
postdecrement the array
index hy 2 bhytes

4, imove.f (ri3)-,d9

d10 <- d10 +

(pswV0ld[-i} *pswOntRc{3i])
Load pswP0ld[i] to d12 and
postdecrement the array
index by 2 bytes

5. | mac d14,d9,d10

6. imove.f (rid)-,d12

d10 <- d10 +
(pswPOlc[3]*pswontReSad] 11)]
dip <- di0 -
(pswPO1d[i]*pswintRcSgdli])
Store di0, wvhich is L sum,
to pswPNewfi}] and
postincrement the array

7. imao d3,d12,d10

8. | mac -d3,d12,d10

9. |move.f d10,(x4)+
index by 2 bytes

[a AAU instruction AU instruction

(b) An assembly code of figure (a)

(a) A candidate loop from half rate GSM

~

) 1 \\

R

A\ A
“ 0‘/1

@ - AAU instruction 6} @111
[

170 ,’ ’

@ . ALU instruction

~——if-® True Data Dependence,
where i represents

latency and j represents

foop tteration difference

- - ifj > Anti Data Dependence Y

~— - Ouput Data Dependence @

(c) A data dependence graph of figure (b)

Figure 3 C Code fragment from halfrate GSM and corresponding loop body in SC140

register is available, place one copy instruction
tfra rl, r10 to the loop preheader as shown in
Figure 2(b).

2. Place one additional operation to clone rl with
additional

update of rl value.

induction variable riQ prior to the
Note that,

resource pressure on AAU units, post increment

to minimize

addressing mode is exploited for the 1* instruc-
tiond, as shown in Figure 2(b).

3. Finally,
dependence by making the replicated value being

update the original loop-carried true
referenced instead. Since the 1st instruction is
already amended to reference cloned value rl0,
no additional change is required.

As a result of this transformation, the original
loop~carried true dependence is removed. By apply-
ing cloning to other RecMII=6 recurrence -circuit
that exists in Figure 1, MII is reduced from 6 to 4.
Without any modification to an existing modulo

4)Since the memory stride between the Ist and 9th instructions
differs by two bytes, indexed post increment addressing mode is
selected.

scheduler, higher loop initiation rate as 4 is
effectively achieved.

For iterative modulo scheduling, candidate loop II
is initially set equal to MII, which is computed as
follows. First, each iteration of branch-free loop
body shown in Figure 3 requires 4 units of ALU
and 5 units of AAU, and SC140 multi-issue DSP
can supply at most 4 units of ALU and 2 units of

AAU per cycle. Thus, ResMII is 3, which is max

4115
({ﬂ[é’) Second, according to DEFINITION 6,
RecMIl for half-rate GSM is 5 and corresponding
RecMII recurrence circuits are depicted in Figured
4(a). Since MII is max{(ResMII, RecMIl), II

initially set to 5 for modulo scheduling.

is

For analysis, consider two loop-carried data
dependences in Figure 4(a). First, the dependence
from the 9™ back to the 2™
since d10 value claimed from the 9™ instruction is
the 2™ the

dependence from the 8 back to the 2" instructions

instructions is anti

generated by instruction. Second,

is output since both instructions store results to
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1. move.f
2. move.l
mac
. move.f
. mac

{ril)+,ds
#32768,d10
~d8,d5,d10
{r13)-,d9
d14,d9,d10
. move.f (rid)-,d12
. mag d3,d12,410
8. mac  d3,d12;d00 |
9. move.f d10,(r4)+

w

Candidate Loop Body
EEEES

(a) SC140 instructions before
dismantling

2 88 A 4 A A5 EQN75)

Y.

had 1. move.f {(ril)+,48 ,:0“
£ |2. move.l #32768,d410

% | 3. mac -48,d45,d10

2 Sle. move.£ (ri3d)-,dv

Q @5, mac d14,49,d10

g &16. move.£ (ri4)-,d12

g

] ar

Y | 7. add d11,d10,d11

5 8. mac. _.4a3,.a12,d22 |
] 9. move.f dil,{rd)+

-

(b) SC140 instructions after
dismantling

Figure 4 RecMII=5 Circuit in half rate GSM candidate loop

d10. Due to these two RecMII=5 recurrence circuits,
half-rate GSM candidate loop fails to be modulo
scheduled with II smaller than 5.
3.2.1 Modulo Variable Expansion to relax Ex-RecMII
due to false dependences
To eliminate two excessive loop—carried false
dependences in Figure 4(a), we apply Modulo Vari-
able Expansion (MVE) proposed by T. Gary and et.
al [18]. Figure 5(a) shows loop kemels before and
after MVE; loop kernel in Figure 5(b) achieves II=3
modulo schedule by unrolling loop kemnel in Figure
5(a) once. The operation is as follows.
+ Identify live too long variables which build loop
carried dependences by their long life time cross
loop iterations. This step is described in Section
4.2. d10 is live too long variable in Figure 5.

Life-time of 410 - cycles [§ B} in iteration ¥,
cycles [4.9) in terstion 2

S 11 move.f (cll)+,ds move.l #32768,d10
<€ {2. mac -d8,d5,d10 move.f (ri3)-,ds
Q |3. mac d14,d49,d10 wmove. £ (rid)-,di1z
3 |4 mac d3,d12,d10 move.f (rll)+,d8 move.l #32768,d10
& {5 mac d3,d12,d10 mac -d8,45,d16 move.f {(rl3)-,ds
6. moves.f dl10, (rd)+ mac di4,d9,d10 move.f (rid)-,di2
2 |7. mac d3,d12,d10
£ 18. wmac d3,d12,d10
W |9. movas.f d10, (rd)+
{a) The modulo scheduled loop before MVE
2 |1. move.f (ri1)+,ds move.l #32768,d10
€ |2. mac -de,ds,d10 movae.f (ri3)-,ds
Z [3. mac d14,d9,d10 move.f (rld)-,di12
4. mac d3,d12,d10 move.f (rii)+.dB move.)l #32768,d15
5. mac d3,d12,d10 mac -d8,d5,d15 move.f (rl3)-,d9
S | 6. moves.f d10,(rd)+ mac di4,d9,d15 move.f (rid)-,di2
s
* 4. mac d3,d12,d15 wove.f (rll)+,d8 move.l #d2768,410
5. mac d3,d12,d15 mac ~d8,d5,d10 wmove.f (r13d)-,d9
6. moves.f d15, (rd)+ mac d14,d9,d10 move.f (rld)-,d12
5|7 mac d3,d12,d10
2 |8 mao d3,d12,d10
W 9. moves.f d10, (rd)+

{b) The medutlo schedutled |oop after MVE

Figure 5 MVE for half rate GSM candidate loop

-Determine unrolling factor for modulo variable
expansion: Recll can potentially be lowered from
5 to 3 by unrolling loop body twice in Figure 5.
The unrolling factor is decided by that minimum
initiation interval divides life time of live too long
variable. For instance, life time of d10 is 5, and II
-is 3 decide by Definition 9. So, unrolling factor is
2 in this code. When a candidate loop is unroiled,
life-time of variable can be separated by register
renaming. However, in order to rename all live
too long values if there are many long variables,
additional data registers are required which can
be beyond the SC140 VLES DSP can support.
Thus, check whether enough data registers exists
for the required renaming.

* Check
Unrolling factor requires additional units of ALU
and units of AAU, and SC140 VLES DSP can
supply at most 4 units of ALU and 2 units of

resource constraint for unroll factor:

AAU per cycle. Thus, if there are no available
functional units for loop unrolling, modulo vari-
able expansion should stop.

* Finally, unroll loop body, rename data value
generated from the beginning of the new loop
iteration with available data registers, and change
the loop counter to be incremented by unrolling
factor. However, since loop iteration count is kept
being reset from outside of this loop, the original
candidate loop requires to be strip-mined to

execute the modulo scheduled loop kernel in

hardware looping mode. Since there are two
additional candidate loops like this in the same
loop nest, code size increase required for MVE

alone was more than 200%.
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322 DISMANTLING to relax Ex-RecMldue to

false dependences

To avoid code size increase from MVE, we
attempted to split excessive lifetimes of registers
by moving data values. This technique is known as
a software way of emulating rotating registers [19].
However, data move instruction sometimes has one
undesired side effect, which resets scaling bit in
Status Register (SR) [4). To ensure output bit exa-
ctness, we instead divide excessive lifetime values
by dismantling destructive instructions that require
to use same register for source and destination.

As an illustration, the 7 mac instruction in
Figure 4(a) can be dismantled into 7.” and the 7,"
instructions followed by a proper register renaming
as shown in Figure 4(b). When this modification is
made, the loop-carried anti dependence from the 9"
back to the 2" instruction and the loop-carried
output dependence from the 8" back to the 2™
instruction in Figure 4(a) are both eliminated; Figure
4(b) depicts dismantled recurrence circuits. As a
result of dismantling, the original RecMII=5 for half
rate GSM candidate loop is effectively lowered to 3
and therefore, the higher loop initiation rate is
achieved without loop kernel unrolling and strip-

mining.

4. PREPROCESSING STRATEGY FOR
EFFECTIVE MODULO SCHEDULING

In order to ease task of cloning and dismantling,
optimizing compiler puts a candidate loop body
such that intra-loop false dependences are removed
whenever possible. In that setting, for a given
candidate loop, the main preprocessing task is to
reduce excessive RecMII (Ex-RecMID) as follows:

* Eliminate loop-carried true dependences of Ex-

RecMII recurrence circuit by register cloning.

* Relax loop—carried false dependences of Ex-RecMII
recurrence circuit by dismantling.

Note that cloning and dismantling transformations
do not come for free. The cloning inevitably increases
register pressure and/or resource constraints due to
additional operations that are required to replicate
induction variables. The dismantling also increases
both register pressure and resource constraints due
to additional instructions that are required to split

destructive instructions.

Nevertheless, considering RecMII as a dominant
limiting factor that fails candidate loops to be
modulo scheduled, the increase in ResMII that
makes Ex-RecMII decrease is always beneficial.
Since the greater decrease in Ex-RecMII means the
better II, the real preprocessing challenge is how to
effectively reduce Ex-RecMIl with cloning and
dismantling subjected to the constraint of ResMII
increase. Therefore, the mission of preprocessing
strategy for effective modulo scheduling is defined

as follows.

For Ex~RecMII of a candidate loop, find an optimal
application sequence of cloning and dismantling that

reduces Ex-RecMII by the largest degree.

4.1 ALGORITHM

Since DDG of a candidate loop can contain
exponentially many recurrence circuits, our optimal
application sequence finding problem is reduced to a
bounded resource allocation problem, which is NP-
complete. In response to this complexity, following
two heuristics are employed:

Heuristic 1 Cloning and dismantling are consi-
dered only when additional operations for these
transformations are guaranteed not to increase
Ex-RecMIL

Heuristic 2 An optimal application sequence of
cloning and dismantling is sought only for Ex-
RecMII recurrence circuits under the constraint of
Heuristic 1.

In particular, Heuristic 1 is designed to guarantee
that cloning and dismantling never make loop
schedule worse. As an illustration, consider Figure
6(a) that contains two RecMII=3 recurrence circuits

r€4=(1-3-4) and *¢r=(2-3-4). When the 3" mac
instruction is indiscretionally dismantled for 7€,

the dependence height of "¢ increases by 1 as
shown in Figure 6(b) and as a result, RecMII of
the candidate loop increases by 1. Heuristic 1
serves as a safeguard against this detrimental case.

To instrument the heuristics described above for
desired optimal application sequence, we exploit

divide-and-conquer algorithm. Since Ex-RecMII is
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1. move.f (r7),ds
2. move.f (r8)+,dé6
3. mac dé ,d7,ds
4. move.l d8,(ri2)+

RecMII=2 recurrence circuits A

1. move.f (r7)+,d8
2. move.f (r8)+,ds

3a. mpPY d6,d7,d15
3,. add d8,d15,d2
4. move.l d2, (ri2)+

and B:
e RecMIT=3 recurrence circuit B:
Critical Path A: 1->3->4
critical Path B: 2->3->4 Critical Path B: 2->3a->3b->4
140
10 10
{ay { ¥ @
10
1'0 o 01
on 10

(a) Before Dismantling

(b) After Dismantling RecMIl=3
recurrence circuit A

Figure 6 An example for the Heuristic [

the dominant limiting factor for a modulo schedule,
such RecMII recurrence circuits are first identified
as a divide step. Section 4.2 describes an algorithm
that effectively finds all

circuits in a given candidate loop. Second, Heuristic

Ex-RecMIl recurrence

2 i1s used as a conquer step and iterative worklist
algorithms, which implement Heuristic 2, are desc—
ribed in Section 4.3. This divide and conquer steps
are integrated into an unified framework, which
described in Section 4.4. Since the preprocessing,
which capitalizes on this unified framework, iterates
until there is no further change in Ex-RecMI],
search space for a desired optimal application
sequence is typically exhausted.

4.2 DIVIDE STEP: Finding Ex-RecMIl Recurrence

Circuits

To identify all recurrence circuits which account
for Ex-RecMII in a given candidate loop, we use
Tiernan’s algorithm that finds Elementary Circuits
(EC) of a Data Dependence Graph (DDG) [20]:
1. When Tierman’s algorithm confirms a non-trivial

recurrence circuit rc=(inst;, instz, .., inst,), each

dependence arc (edge) in rc is retrieved from

DDG to estimate /= according to DEFINITION 5.
2. The confrmed r¢ is added to EC list, which is

sorted in descending order using I,

as key.
For this step, C data structures in Figure 7 are
used; struct EM_CT for a recurrence circuit and

struct LIST for EC list.

/* Elementary Circuit (Recurrence Circuit) */
struct EM_CT {
unsigned char head; // Inst number: head of the circuit
unsigned char  tail; // Inst number. tail of the circuit
unsigned char I , . ;  // DEFINITION 5
unsigned char *  P; /* Elememary Path building array
used in Tiernan’s algorithm */
bvect circuit; /* Circuit representation
in bit vector */
struct LIST * i_ecs; /* Other recurrence circuits that
intersect with this circuit */
struct LIST * p_ecs; /* Other recurrence circuits
that are properly contained */
unsigned int p_inst; /* Inst number: where the desired
dismantling will be placed*/
int status; // DRYRUN|DONE|CLONE\DISMANTLE
b
/* List of Ex-RecMII Recurrence Circuit */

static struct LIST *ECs;

Figure 7 Elementary Circuit (EC) and EC list C
data structures

3. Prior to ¢ insertion, for each "¢ in EC list, the fol-

lowing two fields for both 7¢: and 7¢ are updated.
vi_ecs: set of intersecting recurrence circuits,

and



*p_ecs: set of properly contained recurrence
circuits.

These two fields are used to implement Heuristic
II in following conquer step. In particular, to per—
form set related operations in a constant time, we
additionally represent each recurrence circuit as a
bit; for this, bvect data type is added to EM_CT
recurrence circuit data structure. When circuit confi
rmation process completes, II. of the head node in
EC list is RecMII, according to DEFINITION 6. If

RecMII > ResMII, then all subsequent nodes, which

share the same value of /= in EC list are
Ex-RecMII circuits.

4.3 CONQUER STEP: lterative Worklist Algorithms

For a set of Ex-RecMII recurrence circuits, which
were obtained from previous divide step, the task
of Heuristic I requires finding an optimal cloning
and dismantling application sequence.

Theorem 1 Unless all loop-carried true depen-
of Ex-RecMII

RecMII of a candidate loop cannot be reduced by

dences circuits are eliminated,
dismantling.

Proof: Consider a loop with circuit set C={ci,cz,cs,
., Cn}, ExRecMIl of the loop is lcl

consisted of flow and anti dependence circuits

which is

simultaneously. Let’s apply dismantling technique to
this loop. Assuming the largest anti circuit cx is
composed by a backedge from a read operand w to
a write operand w while it has iteration distance
more than 1. dismantling performs to rename the w
of an instruction on ¢k to an unused register using
dismantled instruction for lowering ExRecMIl. The
w used by other instructions located under renamed
operand is also renamed to the operand. However,
all w operands affected in the flow dependence
circuit must be also renamed to the new one since
there is naming recurrence on the flow circuit. As
a result, dismantling can not resolve the recurrence
circuit in this case. O

Corollary 1 Cloning must be applied prior to
dismantling to reduce Ex-RecMIL

Corollary 2 Order of circuit selection for cloning
does not affect optimal dismantling sequence in
Ex-RecMII recurrence circuits.

In order to implement the task of Heuristic I,
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Corollaries 1 and 2, which deduced from Theorem

1, are used as follows:

1. Partition the set of Ex-RecMII recurrence circuits
into c-worklist and dworklist, where c-worklist
is a set of circuits whose loop—carried depend-
ences are true and d-worklist is a set of recur—
rence circuits whose loop-carried dependences
are false.

2. Find an optimal cloning sequence from c-

worklist with an iterative worklist algorithm in

Figure 8, which builds OptSeqECs list [21].

According to Corollary 2, algorithm in Figure 8

simply chooses the head circuit from c-worklist

and appends it to OptSegECslist.

struct LIST * ¢_worklist = {rc ,rcs,...rci};
struct LIST * d_worklist = {rc;.1,TCisa,...,ICh};
int CurResMII = ResMIl; /* Current Resource bound — */
struct BITSET * NotAvailRegs = set to bitwise union of
1. set of registers which are coming
in alive to the candidate loop block
2. set of registers which are defined
within the candidate loop block
struct List *OptSeqECs = NULL;
int possible;
1% Iterative worklist algorithm for clone worklist */
WHILE (¢_worklist is not empty) DO {
struct EM_CT *re = get_head(c_worklist);
/% precisely estimate the resource and register
requirement for each Ex-RecMII circuit selection */
IF (!(possible = can_perform_clone(re,
&CurResMII, NotAvailRegs)))
RETURN FALSE;
ELSE {
append_to_tail(& OptSeqECs, rc);
¢_worklist = ¢_worklist — {rc};
}
} /¢ end_of WHILE */
/# Continue the iterative work list algorithm for

dismantle_worklist */

Figure 8 Iterative worklist algorithm for c~worklist
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3. Find an optimal dismantling sequence from

d-worklist. Since dismantling one Ex-RecMII
circuit can result in either reducing or stretching
other recurrence circuits, these side-effects must
be precisely accounted for optimal dismantling
circuit selection.

4. Append resulted optimal dismantling sequence to
OptSegECs. Upon completion of steps desribed
above, an optimal preprocessing sequence for a
set of Ex-RecMllrecurrence circuits can be
obtained from OptSeqECs, if such a sequence
exists.

4.3.1 CLONING: Iterative worklist algorithm

For a given recurrence circuit rci in c-worklist,
algorithm in Figure 8 (in particular, can perform
clone()) determines the following:

1. Applicability of cloning to rc;, as explained in
Section 3.1.1.

2. Availability of resources and registers required
for transformation.

rc

When applicable to i, the

placement

cloning deems

of additional operation
identified. Since,
Figure 2(b), insertion of additional cloning operation

required for
cloning must be as shown in
can be made with no resource pressure increase,
the worklist algorithm (in particular, can perform
clone()) exploits this merit:

* If increment/decrement operation of a replicated

induction variable can be encoded into an

existing instruction of ”€i, cloning transforma-
tion can be made with no increase in resource
pressure. In this case, set p inst to an
instruction, where such encoding is possible.

1,
* Otherwise, set p_inst to {T-l Since this helps
total Ex-RecMII

recurrence circuits for subsequent round of

in  reducing number of

preprocessing, it indirectly reduces overall
resource requirements for desired preprocessing.
4.3.2 DISMANTLING: Iterative worklist algorithm
Optimal dismantling sequence in d-worklist can
be sought only when the following side-effects are
accurately forcasted:
1. The number of circuits in d-worklist, which can

be simultaneously dismantled by dismantling 7¢:

2 &8 Al M B A5 B Q075

in the same worklist.
in d-

worklist results in stretching RecMIl of other

2. The prediction whether dismantling "¢

recurrence circuits.

The estimation of the side-effects described
above poses a tremendous computational challenge
since (1) number of circuits, which can be
dismantled, varies depending on which instruction

in 7 is selected for dismantling and (2) the selec-

tion must be made subjected to the constraint that
RecMIl in other recurrence circuits must not be
stretched.

The algorithm in Figure 9 uses a brute-force
to find

dismantling sequence by iterating over each circuit

approach, which attempts an optimal

in d-worklist and its constituent instructions.

However, to reduce the number of necessary
iterations, i_ecs and i_pcs felds of struct EM_CT,
which described in Section 4.2, are exploited. Upon
the completion of algorithm described in Figure 9,
the desired dismantling sequence can be found in
D-Metric if such sequence exists. '

4.4 UNIFIED FRAMEWORK: Divide-and-Conquer

To respond to the complexity of finding an
optimal cloning and dismantling sequence, our
preprocessing problem, we decomposed the original
preprocessing task into a set of sub-tasks. Sections
42 and 4.3 describe how each of the sub-tasks are
implemented.

Figure 10 represents an unified algorithm that
integrates each of the sub-tasks to effectively
perform cloning and dismantling such that the
Ex-RecMIl of a given candidate loop can be
reduced by the largest degree. Since this unified
process continues until there is no further change
in the Ex-RecMII, most of the search space for the
desired optimal preprocessing sequence is typically

exhausted.

5. EXPERIMENTAL RESULTS

This section describes the results of a set of
experiments to illustrate the effectiveness of the uni
fied preprocessing strategy described in Figure 10,
which is implemented for the StarCore

SC140 academic compiler backend. The experi-



14% HAE AE A Z2AMGM LA REE 2AFYL A A

/* Data Structure used for D-Metric */
struct DISMANTLE_ANALYSIS {
struct EM_CT *d_xo; // & recurrence circuit in the d worklist %/
struct LIST * P_eos; /* set of all properly contained circuits ina
the d worklist for d rc */
unsigned int p_inst; // inst number of d_rc selected for dismentling
struct LIST * d metric;/* 1ist of circuits in d-warklisttrat caz be
simnltaneously dismantled by dismantling d_ro*/
}s
struct LIST * D Metriocs;// list of DISMANTLE ANALYSIS object
struct EM_CT *ro; // temporary pointer to iterate d_worklist
unsigned int BIT; // index to Instructions(} glodal array

FOR each r¢ in d worklist DO {
struct DISMANTLE_ANALYSIS *da =
local_alloc(sizeof (struct DISMANTLE_ANALYSIS));
da->d r¢ = rc;
da->p_ecs = find p ecs d worklist (voj);
WHILE (1) {
da->p inst = -1; da->d metric = NULL;

FOR each BIT set in rc->ciromit DO {
IF (BIT == rc->head || BIT == rc->tail)
CONTINUE
p_inst max D Metric(da, BIT);

}
IF {da->p_inst == -1)
RETURN (struct LIST *)NULL; // fail
ELSE IF (heuristicl preserved(da) == TRUE)
BREAK;
ELSE
unset (ro->circuit, da—>phinst) H
} /7 end of while (1)
/* add da to tkhe D_Metric 1ist in descending oxder usving the number of
recurrence clircuits that can be simultanreously dismantied */
add_list (sD Metrics, da->d_metric->size);
} /* end of FOR */

RETURN (D Metrics); // return linked list for D-Metrics

Figure 9 Dismantling algorithm that computes D-Metric
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WHILE (1) {
int reducible:
struct EH CT *ro:

/* 4.3 DYVIDE STRP *t

Find Ex RecMII Recurrence Circuits():

/* 472 CONOURR STEP L7

Partition Ex RecHMII Recurrence Circouite into Two():
/% 4.4.1 CLaWING Y - -

IF {!{reducible =

Iternt.i.ve_Horklist_uqoritm_tnr_c_worklist( 133)

BREAK;
/* 4.4.2 DISANTLING *
IF (!{reduoible =
Itetative_"nrklist_mgoritm_fnr_d_\vorklit( N
BREAK:;

/* 3.2 and 8.4 Cloniny arxd Dismantling Teckmiques */
FOR each re in OptSeqECs DO (
IF (re->status | CLONE)
cormit_cloning(rc):;
ELSE
uumnit,__dismantle( re):

}
/* Rebuild the Data Dependence Graph for the next rowxd */
build DDG():

Figure 10 Integrated Preprocessing Algorithm

mental input is a set of candidate loops obtained
from DSPStone [22], MediaBench [23], half-rate
GSM, enhanced full rate GSM , and other industry
signal application kernels. Table 1 lists the bench-

marks used for our experiments,

In order to isolate the impacts on performance
and code size purely from our preprocessing, two
sets of executables for the SC140 multi-issue DSP
are produced for the benchmarks listed in Table 1;

*ORIG: fully optimized one with original com-

piler, and

* PRE: fully optimized one with the revised com-

piler with our preprocessing proposed.

With these two sets of executables, we measured
(1) cycle counts with the StarCore cycle count
accurate simulator simscl00, and (2) code size with
the StarCore utility tool, scl00-size. The perfor-
mance improvements (decrease in cycle counts) and
code size increase due to our preprocessing were
measured in percent, using the formula ((ORIG —
PRE)/ORIG) * 100.

Figure 11 reports the performance improvements
achieved by applying the unified algorithm in
Figure 10, which is based on cloning and dismant-
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Table 1 Benchmarks used in the Experiments

Program Acronym Description
FIRZDIM FD 2 dimensional Finite Response Filter
LMS LMS Filter benchmarking in DSP stone
Convolution Conv convolution
complex FFT ComFFT 128 point complex FFT
FFT FFT Integer stage scaling FFT
Biquad_N_section BiNsec One IIR biguad
N_complex_updates Ncomup Complex multiply
Matrix Matrix Generic matrix multiply
FIR FIR Complex FIR filter
Matrix 1x3 Mat 1x3 1x3 matrix
IR IIR IR filter
Lattice synthesis Latsyn Typical DSP multiply two vector operation
Panama cryptographic module Pcrypto Panama stream/hash module
GSM GSM v_search, aflatRecursion, utcount, decode, add, syn_fil modules
(sc,af ut,dec,ad,sy) from Global System for Mobile telecommunication

Cloning

Dismantling ]

Matrix

Ncomup
BiNsec
GSMsc
FET
ComFFT
FD 14. 1 ]
LMS i5. 6 ]
Conv 25.9
Gamad [T | ] |
GSHut 19.87
csMat [ 73]

GSHsy

0 5 10 15 20 25 30
Figure 11 Percent wise performance improvement
(number of cycles reduction) compared

to the original

ling techniques respectively. The overall performance
improvement from the preprocessing ranges from
03% to 29.5%, and
improvement is 12.9%6. Considering there is no modi

the average. performance
fication made to the existing iterative modulo
scheduler and the performance comparison is made
to highly optimized SC140 DSP code, the perfor-
mance gain from our preprocessing was impressive.
In particular, the performance improvements on
Matlx3, FIR, FFT and ComFFT benchmarks were
brought to our attention, since

1. the iterative application of cloning followed by

dismantling for an existing modulo scheduler

can deliver huge performance gain by effectively

reducing the Ex-RecMlls of a candidate loop,
and

2. the preprocessing strategy described in Figure 10
can detect and exploit such opportunities for an
effective modulo scheduling.

Note that none of the benchmarks in Figure 11
reports the performance degradation. This is not a
mishap, but due to the fact that our algorithm is
designed to apply
techniques only when the additional operations for

cloning and dismantling
our preprocessing can be placed in non-RecMII
recurrence circuits.

Figure 12 reports the code size increase due to
the unified algorithm as described in Figure 10.
Since cloning and dismantling reduces the Ex-
RecMIls of a given candidate loop, the existing
modulo  scheduler discovers instruction level
parallelism across more loop iteration boundary and
as a result, achieves a better modulo schedule.
Considering the size of the prologue and epilogue
grow proportionally as more loop iterations of the
candidate loop get overlapped for a final schedule,
the code size increase is unavoidable. However, we
also observed that the existing modulo scheduler
can find a better loop schedule for a given number
of loop iteration boundaries when our preprocessing
is applied. This is the reason why our prepro-

cessing to IR, GSMdec, GSMad and GSMsy
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Cloning

Dismantling [J

Pcrypto
Latsyn
IIR
Mat1x3
FIR
GSMdec
Matrix
Ncomup

BiNsec
G8Msc
PET
ComPET
ED

LMs
conv 28 ]
GsMad ]9, 65 l ]
GSMut 17.8 ]
Gsnat [3.70]

GaMsy

i
5 10 15 20 25 30 60 65

Figure 12 Percent wise code size increase compared
to the original

benchmarks, reports significant performance impro-
vements with negligible increase in code size.

For the benchmarks listed in Figure 12, the
overall code size increase from the preprocessing
strategy ranges from 0% to 63.1%, and the average
increase is 13.99%. However, note that the bench-
marks in Table 1 are critical loop kernels which
typically account for 5%-10% of entire application
code size. By carefully applying the preprocessing
to the mission critical loops with profiling, the

overall code size increase can be moderated.

6. RELATED WORK

The detrimental of Ex-RecMIl
loop-carried dependences were also noticed by Lam.
she observed that Ex-RecMII is
typically caused between a value being defned by

effects from

In particular,

a high latency operation (e.g., multiplication and
memory load) and its subsequent use. To effec-
lower this Ex-RecMII,
compiler technique, referred to as Modulo Variable

tively Lam pioneered a
Expansion (MVE), that removes loop-carried anti
and output dependences in recurrence circuits [24].
Since MVE achieves the desired removal with loop
unrolling followed by register renaming, high loop
unrolling factor might incur tremendous increase in
code size and register pressure. Another drawback
of this scheme is that those candidate loops which
execute for a multiple number of times the unrol-
ling factor can only be properly accommodated. To

overcome this problem, either peeling candidate

loops for some number of loop iterations or adding
a branch out of the unrolled loop body are required [25].

To duplicate the effect of MVE without loop
Huff proposed an

unrolling, innovative rotating

register files as an architectural feature in a
hypothetical VLIW processor similar to Cydrome’s
Cydra 5 [26). Since Huff technique still requires a
large number of architected rotating registers to
support MVE without code expansion, Tyson and
et al. ameliorated Huff technique with register
queues and rq-connect instruction [18]. In their
technique, register queues share a common name-
space with physical register files. As a conse—
quence, the architected rotating register space is no
longer a limiting factor.

However, contrary to high performance VLIW
machines which were the target for rotating regi-
ster files and register queues, most of operations in
SC140 multi-issue DSP typically require no latency.
Due to this lack of operation latency, the number
of registers whose lifetimes extend Ilis expected
fairly low compared to that of high performance
VLIW machines. According to our benchmarking
with various signal processing kernels, one register
on average is reported whose lifetime exceeds II
We believe that this small number is fairly difficult
to justify rotating register files for multi-issue
DSPs since adding extra register file and creating
read-write ports to the file are known to be quite
expensive. In addition, this small number is neither
good enough to justify the internal register map
table and additional hardware logics for register
queues to emulate register renaming feature in
rotating register files.

To duplicate the effect of MVE without loop
unrolling and rotating register files, Stotzer and
Leiss exploited TMS320C6x DSP microarchitecture
which has fixed operation latencies and no pipeline
interlocks. The operations with latency > 1 are
referred in-flight until they complete execution.
TMS320C6x DSP architecture allows multiple in-fl
ight operations to have pending writes to the same
register. With this in-flight feature, Stotzer and
Leiss demonstrated that they can emulate Huff's
slack scheduling without requiring rotating register
files [26,9]. However, there are two major draw-
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backs in duplicating the effect of MVE with in-fl
ight feature. First, note that the longest in-flight
operation in TMS320C6x is a branch whose latency
is 6. Since modulo scheduling potentially overlaps 6
iterations of a candidate loop the code size increase
for prologue and epilogue can be quite huge.
note that TMS320C6x does not allow
interrupts to be serviced when a branch operation

Second,

is in-flight. When I of a modulo scheduled loop is
less than 6, there is always a branch which is in-fl
ight during the loop execution and thereby, system
response time can be unduly delayed.

The work reported in this paper is an extension
of our early work. In [27], we proposed an app-
roach that resolved only false dependencies by
branch and bound scheme with formal definition of
the dependence circuit problem. That work differs
from our current work since it focused only on a

false dependence.

7. CONCLUSION

To address resource under-utilization problem for
multi-issue DSPs, this paper first presents two new
transformations, cloning and dismantling, that
reduce excessive RecMII with a partial aid from
under-utilized functional resources. Second, since
in Ex-RecMIl means the

better II, this paper presents a novel preprocessing

the greater decrease

strategy that reduces Ex-RecMIl by the largest
degree with cloning and dismantling subjected to
the constraint of ResMII increase. The proposed
preprocessing techniques and strategy are imple-
mented for SC140 multi-issue DSP compiler. As a
result of implementation, 12.9% average runtime
improvement was reported for benchmarks in Table
1; this runtime improvement was made at the
expense of 13.99%

there is

average code size increase.
Considering no modification made to
existing modulo scheduler and performance com-
parison is made to highly optimized SC140 DSP
code, the gain was impressive. However, we also
observe that Modulo Variable Expansion (MVE)
strategy described by M. Lam and et. al. can be
beneficial since one register on an average is
reported whose lifetime exceeds I for benchmarks

listed in Table 1. Future experimentation may

ST EI o
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assess how our unified preprocessing strategy can
be orchestrated with MVE as a postprocessing
technique for effective modulo scheduling.
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