고속 UWB 시스템을 위한 인터폴레이터의 설계 및 구현

Design and implementation of an interpolator for high speed UWB system

  • 김상동 (대구경북과학기술연구원 IT연구부) ;
  • 이종훈 (대구경북과학기술연구원 IT연구부) ;
  • 정우영 (대구경북과학기술연구원 IT연구부) ;
  • 정정화 (한양대학교 정보통신공학부)
  • Kim, Sang-Dong (Department of IT, Daegu Gyeongbuk Institute of Science & Technology) ;
  • Lee, Jong-Hun (Department of IT, Daegu Gyeongbuk Institute of Science & Technology) ;
  • Jung, Woo-Young (Department of IT, Daegu Gyeongbuk Institute of Science & Technology) ;
  • Chong, Jong-Wha (College of Information & Communications, Hanyang University)
  • 발행 : 2007.01.25

초록

본 논문은 고속 UWB(Ultra Wide Band) 시스템을 위한 인터폴레이터를 구현한다. 구현된 고속 UWB 시스템용 인터폴레이터는 기존 가변 파라미터를 이용한 큐빅 인터폴레이터에 병렬 처리 기술과 파이프라인 기법을 동시에 적용한다. Stratix II EP2S60F1020C3를 타겟 디바이스로 실험한 결과, 최대지연경로 속도와 최대지연경로 주기가 각각 최대 102.42MHz와 9.764ns가 되었고, 동작속도는 최대 대략 190%이상 향상되었음을 알 수 있다.

This paper designs an interpolator for a high speed ultra wide bandwidth (UWB). The UWB wireless technology will play a key role in short-range wireless connectivity supporting very high bit rates availability, low power consumption, and location capabilities. Because the UWB needs high operating speed, a cubic interpolator based on variable parameters for the UWB needs to be operated at a high speed. In order to improve an operating speed, the modified cubic interpolator is based on both a parallel processing and a pipelining in the existing interpolator simultaneously. Experimental results show that a maximum operating speed and period of the proposed interpolator using Stratix II EP2S60F1020C3 is 102.42MHz and 9.764ns, respectively. Compared to the conventional interpolator, the designed cubic parameter interpolator has been improved more than about 190%.

키워드

참고문헌

  1. Jeff Foerster, E. Green, S. Somayazulu, and D. Leeper, 'Ultra-Wideband Technology for Short or Medium Range Wireless Communications,' Intel Technology Journal, Q2 2001
  2. http://grouper.ieee.org/groups/802/15/
  3. J. Foerster, V. Somayazulu, S. Roy, E. Green, K. Tinsley, C. Brabenac, D. Leeper and M.Ho, IEEE802.15-03/109r1, Mar. 2003
  4. A. Batra, J. Balakrishnan and A. Dabak, IEEE802.15-03/141r1, Mar. 2003
  5. M. Welborn, IEEE802.15-03/153r5, May 2003
  6. S. A. Fechtel, 'OFDM Carrier and Sampling Frequency Synchronization and its Performance on Stationary and Mobile Channels,' IEEE Transactions on Consumer Electronics, Vol. 46, No. 3, August 2000, pp. 438-441 https://doi.org/10.1109/30.883390
  7. D. K. Kim, S. H. Do, H. B. Cho, H. J. Choi, K. B. Kim, 'A New Joint Algorithm of Symbol Timing Recovery and Sampling Clock Adjustment for OFDM Systems,' IEEE Transactions on Consumer Electronics, Vol. 44, No. 3, August 1998, pp. 1142-1149 https://doi.org/10.1109/30.713247
  8. T. Pollet, M. Peeters, 'Synchronization with DMT Modulation,' IEEE Comm. Magazine, April 1999, pp. 80-86 https://doi.org/10.1109/35.755454
  9. T. Pollet, P. Spruyt, M. Moeneclaey, 'The BER Performance of OFDM Systems using Non-Synchronized Sampling,' IEEE Glabal Telecommunications Conference 1994, pp. 253-257 https://doi.org/10.1109/GLOCOM.1994.513417
  10. F. M. Gardner, 'Interpolator in Digital Modems-Part I: Fundamentals,' IEEE Transactions on Communications, Vol. 41, No. 3, June 1993, pp. 501-507 https://doi.org/10.1109/26.221081
  11. 김상동, 이종훈, 정우영, 정정화, 'Multi-band OFDM UWB 시스템용 변형된 가변 파라미터를 이용한 큐빅 인터폴레이터의 설계 및 구현,' 2006 대한임베디드공학회 춘계 학술대회, p119-122, 2006년 5월
  12. L. Erup, F. M. Gardner, R. A. Harris, 'Interpolator in Digital Modems-Part II:Implementation and Performance,' IEEE Transactions on Communications, Vol. 41, No. 6, June 1993, pp. 998-1008 https://doi.org/10.1109/26.231921
  13. D. Fu, A. N. Wilson, 'Trigonometric Polynomial Interpolation for Timing Recovery,' IEEE Transactions on Circuit and Systems-I : Regular paper, Vol. 52, No. 2, Feb. 2005 https://doi.org/10.1109/TCSI.2004.841573
  14. H. Zhang, 'Interpolator for all-digital receivers,' Electronics Letters ,13th February 1997, Vol.33, No.4 , pp. 261-262 https://doi.org/10.1049/el:19970223
  15. http://www.altera.com