DOI QR코드

DOI QR Code

Design, Simulation and Fabrication of a Quadstable Monolithic Mechanism

4 중 안정성 일체형 메커니즘의 설계, 해석 및 제작

  • 한정삼 (안동대학교 기계공학부)
  • Published : 2007.05.01

Abstract

This paper presents a novel quadstable monolithic mechanism (QsMM) which provides four stable equilibrium positions within its operation range. The quadstable mechanism has been realized from the use of both X- and Y-directional bistable structures which use curved snapping beams. A millimeter-scale brass mechanism was fabricated by ultra-precision milling to test the quadstability and the displacement-load behavior, and the prototype clearly demonstrated four distinct stable positions in its millimeter-scale planar operation. We discuss the design concept, finite element simulation for static and transient responses, fabrication by ultra-precision milling, and experimental measurement of the proposed quadstable mechanism.

Keywords

References

  1. Qiu, J., Lang, J. H. and Slocum, A. H., 2004, 'A Curved-Beam Bistable Mechanism,' J. Microelectromech. Syst., Vol. 13, No. 2, pp. 137-146 https://doi.org/10.1109/JMEMS.2004.825308
  2. Qiu, J., Lang, J. H., Slocum, A. H. and Struempler, R., 2003, 'A High-Current Electrothermal Bistable MEMS relay,' Proc. IEEE MEMS 2003, pp. 64-67 https://doi.org/10.1109/MEMSYS.2003.1189688
  3. Vangbo, M., 1998, 'An Analytical Analysis of a Compressed Bistable Buckled Beam,' Sensors Actuators (A), Vol. 69, No. 3, pp. 212-216 https://doi.org/10.1016/S0924-4247(98)00097-1
  4. Vangbo, M. and Backlund, Y, 1998, 'A Lateral Symmetrically Bistable Buckled Beam,' J. Micromech. Microeng., Vol. 8, pp. 29-32 https://doi.org/10.1088/0960-1317/8/1/005
  5. Lee, J. H., Lee, M. L., Jang, W. I., Choi, C. A. and Joo, J. W., 1999, 'Bi-Stable Planar Polysilicon Micro-Actuators with Shallow Arch-Shaped Leaf Springs,' Proc. SPIE, Vol. 3876, pp. 274-279 https://doi.org/10.1117/12.360505
  6. Jensen, B. D., Howell, L. L. and Salmon, L. G., 1999, 'Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms,' J. Mech. Des., Vol. 121, No. 3, pp. 416-423 https://doi.org/10.1115/1.2829477
  7. Gomm, T., Howell, L. L. and Selfridge, R. H., 2002, 'In-Plane Linear Displacement Bistable Microrelay,' J. Micromech. Microeng., Vol. 12, pp. 257-264 https://doi.org/10.1088/0960-1317/12/3/310
  8. Masters, N. D. and Howell, L. L., 2003, 'A Self-Retracting Fully-Compliant Bistable Micromechanism,' J. Microelectromech. Syst., Vol. 12, pp. 273-280 https://doi.org/10.1109/JMEMS.2003.811751
  9. Hwang, I. H., Shim, Y. S. and Lee, J. H., 2003, 'Modeling and Experimental Characterization of the Chevron-Type Bi-Stable Microactuator,' J. Micromech. Microeng., Vol. 13, pp. 948-954 https://doi.org/10.1088/0960-1317/13/6/318
  10. Casals-Terre, J. and Shkel, A. M., 2004, 'Dynamic Analysis of a Snap-Action Micromechanism,' IEEE Sensors, Vienna, Oct. 2004, pp. 1245-1248 https://doi.org/10.1109/ICSENS.2004.1426406
  11. Goll, C., Bacher, W., Bustgens, B., Maas, D., Menz, W. and Schomburg, W. K., 1996, 'Microvalves with Bistable Buckled Polymer Diaphragms,' J. Micromech. Microeng., Vol. 6, pp. 77-79 https://doi.org/10.1088/0960-1317/6/1/017
  12. Halg, B., 1990, 'On a Nonvolatile Memory Cell Based on Micro-Electro-Mechanics,' Proc. IEEE Micro Electro Mechanical Systems Workshop, pp 172-176 https://doi.org/10.1109/MEMSYS.1990.110271
  13. Hoffman, M., Kopka, P. and Voges, E., 1999, 'Bistable Micromechanical Fiber-Optic Switches on Silicon with Thermal Actuators,' Sensors Actuators (A), Vol. 78, No. 1, pp. 28-35 https://doi.org/10.1016/S0924-4247(99)00200-9
  14. Brenner, M. P., Lang, J. H., Li, J., Qiu, J. and Slocum, A. H., 2003, 'Optimal Design of a Bistable Switch,' PNAS, Vol. 100, No. 17, pp. 9663-9667 https://doi.org/10.1073/pnas.1531507100
  15. Go, J. S., Cho, Y., Kwak, B. M. and Park, K., 1996, 'Design, Fabrication and Testing of a Microswitch Using Snap-through Buckling Phenomenon,' Transactions of the KSME, Vol. 20, No. 2, pp. 481-487
  16. Han, J. S., Ko, J. S., Kim, Y. T. and Kwak, B. M., 2002, 'Parametric Study and Optimization of a Micro-Optical Switch with a Laterally Driven Electro-Magnetic Microactuator,' J. Micromech. Microeng., Vol. 12, pp.939-947 https://doi.org/10.1088/0960-1317/12/6/326
  17. Menz, W., Forster, R., Schoth, A. and Muller, C., 2002, 'Non-Conventional Machining for Microsystems,' Proc. 3rd euspen Int. Conf., pp. 3-7
  18. ANSYS, 2003, ANSYS Theory Reference 7.1, (ANSYS Inc)

Cited by

  1. Multistable Microactuators Functioning on the Basis of Electromagnetic Lorentz Force: Nonlinear Structural and Electrothermal Analyses vol.34, pp.8, 2010, https://doi.org/10.3795/KSME-A.2010.34.8.1119