DOI QR코드

DOI QR Code

Intelligent Walking Modeling of Humanoid Robot Using Learning Based Neuro-Fuzzy System

학습기반 뉴로-퍼지 시스템을 이용한 휴머노이드 로봇의 지능보행 모델링

  • 박귀태 (고려대학교 전기전자전파공학과) ;
  • 김동원 (고려대학교 전기전자전파공학과)
  • Published : 2007.04.01

Abstract

Intelligent walking modeling of humanoid robot using learning based neuro-fuzzy system is presented in this paper. Walking pattern, trajectory of the zero moment point (ZMP) in a humanoid robot is used as an important criterion for the balance of the walking robots but its complex dynamics makes robot control difficult. In addition, it is difficult to generate stable and natural walking motion for a robot. To handle these difficulties and explain empirical laws of the humanoid robot, we are modeling practical humanoid robot using neuro-fuzzy system based on the two types of natural motions which are walking trajectories on a t1at floor and on an ascent. Learning based neuro-fuzzy system employed has good learning capability and computational performance. The results from neuro-fuzzy system are compared with previous approach.

Keywords

References

  1. 유범재, 오상록, '네트워크 기반 휴머노이드,' 전자공학회지, vol. 32, no. 1, pp. 60-69, Jan. 2005
  2. Y. Guan, E. S. Neo, K. Yokoi, and K. Tanie, 'Stepping over obstacles with humanoid robots.' IEEE Trans Robotics, vol, 22, no. 5, pp. 958-973, Oct. 2006 https://doi.org/10.1109/TRO.2006.878962
  3. M. Vukobratovic and D. Juricic, 'Contribution to the systhesis of biped gait,' IEEE Trans. Biomed. Eng., vol. 16, no. 1. pp. 1-6, 1969 https://doi.org/10.1109/TBME.1969.4502596
  4. M. Vukobratovic and B. Brovac, 'Zero-moment point-thirty five years of its life,' lnt. J. Humanoid Robotics. vol. 1, pp. 157-173, 2004 https://doi.org/10.1142/S0219843604000083
  5. Y. Hasegawa, T. Arakawa, and T. Fukuda, 'Trajectory generation for biped locomotion robot,' Mechatronics, vol. 10, pp. 67-89, 2000 https://doi.org/10.1016/S0957-4158(99)00052-5
  6. J. H. Park, 'Fuzzy-logic zero-moment-point trajectory generation tor reduced trunk motions of biped robots,' Fuzzy sets and systems, vol. 134, pp. 189-203,2003 https://doi.org/10.1016/S0165-0114(02)00237-3
  7. J. H. Park and Y. K. Rhee, 'ZMP trajectory ceneration for reduced trunk motions of biped robots' Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, IROS '98, pp. 90-95, 1998 https://doi.org/10.1109/IROS.1998.724602
  8. 김동원, 박귀태, '이족 휴머노이드 로봇의 안정적인 보행 패턴 분석:퍼지 모델링 접근방법,' 전기학회논문지, vol. 54D, no. 6, pp. 376-382, .Jun. 2005
  9. S. Kajita, F. Kanehiro, and K. Kaneko, 'Biped walking pattern generation by using preview control of zero-moment point,' Proc. IEEE Int. Conf. Robot Autom., pp. 1620-1626,2003
  10. J.-S. R. Jang, 'ANFIS: Adaptive-network-based fuzzy inference systems,' IEEE Trans. on System. Man and Cybernetics, vol. 23, pp. 665-685, May 1993 https://doi.org/10.1109/21.256541
  11. T. Takagi and M. Sugeno, 'Fuzzy identification of systems and its applications to modeling and control,' IEEE Trans. Syst., Man, Cybern., SMC-15, pp. 116-132, 1985 https://doi.org/10.1109/TSMC.1985.6313399