212 AEARY=EA &ZEH] B &§ A U A A 3 2073

B4 QAES % £ZEgo] Hl2E
AEA4 Fgol digt A A4
(A Case Study on the Improvement of Software Test
Effectiveness through Static Testing)

= t A T

4= 9 T
(Hyo Young Kim) (Hyuk Soo Han)

e
1o

2 o ofF7A] AZEd Y MERFAE AARET 8F € FET H2E A0 £YHA ¥
lew, gt Nk z7]¢) Ad, 238 F e AFEAA H2EA AEH7) B F9 =8)
HEES &S Hojur) o] FAo4 S vigos B =i FHNHDA NN ALHASF) =)
HA 943, HZE Aol AV 283 JWHA F& A9 H2E9 2S4S FPNZ2 F A= W
He AAEE T3 AYsn Yok HEE dAMe 2= i 2= F2 E4E 5 HaE $4
9 A4, H2EE HZE FAoj& 44 59 F8 853 vH2ERTY AdEne 88 FAFHOE A
Algict,

AN E : AF HAE HZIE 584, 2TE O] HAE

Abstract Not enough verification or enough design of test is not performing in many software
developments organization as yet. Therefore, defects that can be detected and corrected during the
beginning phases of development are usually found during dynamic testing, it is often observed that
testing is inefficient compared to effort for testing. This study aims to suggest a method for effective
testing through case study. It is useful in case of not verification and not enough design of test in
the previous phase than coding. We show in a concrete way major activities that determine
prioritization of testing and level of test case design through static testing, i.e. code review and
analysis of code quality. And also we show role between test team and development team.

Key words : Static test, Test effectiveness, Software testing

1. Introduction whether the software works right through test or

. o not. However, potential defects and malfunction rate

There exists a broad range of applications for . o . .
; dih] ' A of the final system will increase if the test is not
software and the importance of quality is rising. As . .
)) P 'q v .g thoroughly completed for non-functional require-
services provided by software increase, the size as .
))] ments such as performance and function tests for

well as complexity of software are increasing,
nich i fort i normal and abnormal casesf1].
which require more effort ior quahty assurance. . . .
Sof €d A b qd zr N As explained commonly in V&V models, planning
oftware qualit, an be improved throu Sys-— . .
. d 1.y © l pro .O & YS and designing any tests start by gathering and
tematic analysis of requirement, design, active X . s .
))) analyzing requirements. Thus, such activities highly
testing, and through careful static reviews at each o .
depend on development activities of previous pro-

development stage. The most common method of
L . . . cesses such as requirement analysis, design, coding,

several activities is the active test, which validate . .
etc[2]. Therefore, success of failure of test activities

t 32 9 LGAA S/W & SHE S/W Engineering Gr. 49974 is determined according to systematic processes of
gomal @smu.ac.kr

OSNNY L Evsam hTEdelRy
hshan@smu.ac.kr since a systematic development model often lacks

development activities in each phase. Unfortunately,

=BES 20064 88 4% in many software development organizations, it is
Az : o006d 129 52 ’

AH HEEE B AT EH 0] HAE F&4 4o U Atel 97 213

difficult to apply a cohesive stage-to-stage testing
that flows

subroutine testing,

model smoothly from function and
to the testing of integrated
the testing of the

complete system. Furthermore, this situation beco—

modules, and ending with
mes increasingly serious as the size and complexity
of the software project increase. This becomes
further difficult when development lifecycles and
Time to Market are short. Generally in such cases,
there is a great dependency on test engineers, and
testing is focused at the system level during the
final stages of development. Most defects are found
during testing of the software. This means that
testing is inefficient compare to effort for testing
because defects that can be identified and rectified
at early stage are found lately[3,4].

It is difficult to apply a systematic test for
various reasons, and it contains problems of dela-
ying project by reworking at the last phase-it is a
reality that this cannot be easily rectified. With
such problems in mind, we study about improve-
ment cases of test effectiveness through static test.
We are considering about prioritizing tests through
code analysis and review, and adjusting level of
test case design by analyzing characteristics of
software and current project situation. This paper
suggests a more efficient testing activity model
based on the results observed in the case study.

The following is organization of this paper.
Chapter 2 introduces static test and the case study
of IBM. Chapter 3 explores the inherent problems
in the case study, reinforces the concept of static
test methods, and reviews the results of improvement.

2. Related work

2.1 Static test

Software testing can be classified in many ways;
it can be differentiated into dynamic test and static
test depending on whether software runs to identify
software defects. While dynamic testing requires
running of the software, static testing can be
conducted without operating the software. Static
test is a method to identify unusual behaviors or
errors without running the codes. Static testing
includes inspection and review activities such as

code walkthroughs and analysis with SRS and

design documentation (HLD, LLD) [1,5,6].

(1) Review

Reviews can be done with all major outputs from
each development phase, such as SRS, design
documentation, and source code. Reviews such as
inspection and walkthrough are a method of iden-
tifying defects statically by experts or developers.

Introduced by Fagen in 1976, inspection is a
review-based method of identifying errors through
application of a pre-made checklist. Different from
walkthrough or technical review, inspection is a
formal activity that relies on a series of steps
including overview, preparation, individual inspection,
inspection meetings, rework, and follow up. For
individual inspection and inspection meetings,
inspectors generally utilize checklists that contain
major check items [1,7,8].

On the other hand, walkthroughs are informal
reviews that can be carried out during software
development, when in need. Walkthroughs generally

do not utilize checklists to identify defect [1].

(2) Code Analysis

Source code analysis can be effective in iden-
tifying potential defects, and is performed with the
aid of code analysis tools[9].

Since such tools can be used on software that is
not yet executable, they offer a very useful means
of code analysis for early start of test. More
effectively than dynamic testing, such tools can
often identify a large range of hidden defects such
as memory leaks, as well as provide general
metrics of code quality and complexity. We can
decide test levels and scope through several metric
information.

Besides several researcher mentioned about im-
provement test effectiveness by static test. Winkler
studied the Usage Based Reading (UBR) technique,
(UBT-i) that

testing scenarios and inspection techniques. He

Usage Based Testing integrates
explained mention that is useful for design speci-
fication as well as defect detection in early stages
of software development. Laitenberger proposed to
apply static test by inspection, code analysis and
dynamic test. Static and dynamic test are comple-

214 AEARH=EA 2ZE B §& A 4 F A 3 Z(Q007.3)

mentary each other [10].

Several researcher include Laitenberger suggested
that static test like inspection and dynamic test
should be applied in combination rather than in
isolation [11-13]. Laitenberger show the effects of
combining software inspection and structural testing
on software quality by experiment. One of result of
his experiment present 39 percent (on average) of
the defects were not detected at all, it might be
more valuable to apply inspection together with
other testing techniques, such as boundary value
analysis, to achieve a better defect coverage [10].

Lavenhar described that one of the most effective
ways to identify and manage risk for an application
is to iteratively review its code throughout the
development cycle. According to his opinion sub-
stantial net improvements in software security can
be realized through the formal use of design and
code inspection. He presents best practices for
performing code analysis to uncover errors in and
improve the quality of source code. Methods include
manual code auditing, walkthroughs, static analysis,
dynamic analysis, metric analysis, testability ana-
lysis, crypto analysis, random number analysis, and
fault injection [14,15].

2.2 Improvement of test effectiveness by

testing techniques and test activities

Most of previous studies to improve test effec—
tiveness are related application of test techniques.
That kind of studies focused on the test cases
design. Pizza and Strigini considered test effective-
ness in improve of defect detection by to compare
several test techniques [16]. And Frankl with his
colleague are comparing several white box test
techniques by coverage of that in effectiveness
view of point {17].

We can consider that project team analyze the
cause and identify areas for test improvement
process by other approach for test effectiveness.
Chernak proposed any practice for that in his
article. Understand and document the test process,
identify the factors for enhance test case design
and improve defect detection rate, and then make
up for the weak points [18]. That study focused on
the test cases design also.

2.3 The practices of IBM

Many organizations put various efforts to carry
out an efficient test and achieve high quality from
early phases, and various cases have been
introduced consequently. However, according to a
technical report in 1999 by IBM, close relationship
of testing to other development activities was
stressed.

IBM’s report introduces 28 best software deve-
lopment practices on testing. Among these, the
report proposes functional specifications, review and
inspection, formal check-in and check~out proce-
dures, functional varieties of test, multi-platform
testing, internal betas, automated test execution,
beta programs, and nightly builds, as the 9 most
fundamental and necessary practices [7,19]. Review
and inspection are emphasized as static tests for
effective method of testing. Such activities at the
early stages of development prevent unnecessary
efforts for testing and reduce dynamic test cycle
times.

Other major practices are comprised in teaming
testers with developers, code coverage, automated
environment generators, testing to facilitate ship on
state task diagrams,

demand, memory resource

failure simulation, statistical testing, semiformal
methods, check-in tests for code, minimizing reg-
ression tests, instrumented methods for calculating
MTTF (mean time to failure), benchmark tests, and
bug bounties.

in the IBM

report are quite useful, the application of these

While diverse practices outlined

practices will differ according to systematization of
the organization’s production environment, maturity
level of the organization, and the skill level of
developers and testers.

2.4 A challenge of previous works

A diversity of method proposed through many
research, le. review and analysis of code quality.
And many development organizations make an
effort for review, static analysis. Generally many
researches focus on method itself review, static
analysis, testing and so on. Mostly they don't
consider application of techniques and don’t explain
case study based on practical development situation.

Review is typical static test. Basically that is
conducted in each phase while development by

A HEES B9 £ZES Y H2E 584 P Y Ale A7 215

developer. If most software development is sys-
tematic development, we don’t need consider that
kind of method for test effectiveness. Though most
organizations recognize the importance of static
tests, and some level of static testing is usually
employed, these tests are often not applied
systematically by that kind of reasons. Therefore
testing in last phase of development lifecycle is non
effectiveness. There is nothing for it but to do.
This study review about how can be used various
test method and what is the effective method for
software that finish coding under against time for
delivery. And then we propose applicable effective
test method considering the situation of software

development through case study.

3. A case study

This study has searched and applied the test
effectiveness and quality improvement methods on
the API test of a middleware application targeted
for an embedded system. The approach used and
its result are described in the following sections.

3.1 Status Analysis for improvement

Observing the project status for testing, the
coding for this project had already been completed,
but reference materials for test case planning were
deficient. Furthermore, the number of software’s
APIs were 977 making it difficult to complete a full
test in a given period of time. Therefore, we

decided to focus on the APIs that have high risks,
and planned the testing accordingly.

Basic standards for selecting APIs for testing
were-APls that are actually used, APIs with high
risks (complicate codes, unstructured files, and code
with many lines), and APIs where problems were
found while applying to products. We used static
analysis tool to measure code risk rate and
determined test case design considering the analysis
result and the functional characteristics. The selec~
tion standard was based on the advice of McCabe
in his studies regarding complexity measurement
[20]. We selected API codes with Complexity v(g)
above 10 and Essential Complexity ev(g) above 40
as primary test materials. Code analysis identified
61 APIs for primary testing. We considered pri-
oritization based on the analysis of results from
previous tests, decided the level of test design, and
carried out the test. White Box test as well as
Black Box test is conducted about identified 61 API
by code risk evaluation. We designed many test
cases for Black Box test and White Box test.
However we design normal and abnormal test
cases for Black Box test, just conducted Black Box
test in other APIs.

Table 1
evaluation for selecting APIs subject to testing, and

shows the standard of code risk

Table 2 shows the examples about the applied
results.

Table 1 Standard of Code Risk Evaluation

Metric Very High High Average Low Very Low Guideline
Complexity v(g) > 50 21~50 11~-20 6-~10 1~5 10 or less
Essential Complexity ev(g) > 28 21~28 13~20 5~12 1~4 4 or less

Table 2 Examples about Evaluation Results
Weight of Risk Factors
API LOC v(g) evig) iv(g) (;(()iz) evig) (30%) (IZ,(();;) Risk Score

REditCtrl'REditCtrl_Mxx 120 15 23 0.19 3 4 5 3.70
EditCtrl_Getxx 128 24 6 0.2 4 2 5 3.60
RListCtrl_Ensurexx 120 15 15 0.16 3 3 5 3.40
Dialog ‘Dialog_Createxx 119 3 27 0.27 1 4 5 2.70
EditCtr]_Ensurexx 68 11 7 0.23 3 2 3 270
EditCtrl_Insertxx 61 13 10 0.26 3 2 3 270
ClndCtrl_Convertxx 94 19 2 0.26 3 1 4 2.60
RListCtrl'RListCtr]l_Createxx 80 1 22 0.17 1 4 4 2.50
ClndCtrl_ConvertSolxx 59 14 1 0.24 3 1 3 2.40
REditCtr]'REditCtrl_Reorderxx 90 8 8 0.2 2 2 4 2.40

216 BARALIE=EA AT E]

3.2 Improvement point

After analyzing the identified defects by API
Test, it was observed that most defects could have
been identified without the use of any dynamic
testing. Many defects could have been identified
and repaired through code reviews before test.
Table 3 shows defects organized by type. Among
the values, errors of return values and defects
regarding halts during operation were found to be
pre-identifiable through review.

Jest team Development team

| MeothyofscopeMimst Jé—— intorm candidae objectof Test |

!

umam@n&mm !

Decide objectof AP Test _[¢——s Reviow blct oftest and Foodback!

l Offer information for Test design

WT@%&WK :
X Rleview of Test Case and Foadback !
L Dynamic Testing —H Follow up of Test resuft

3

| Evataton about Test st |

Figure 1 API Test Activities Before Implementing
Modified Static Tests

Jestteam

l tderdify of scope AP test

Develooment team
l‘—" Infarm candidste object of Test

| code & Business Risk sratysts |

[Dockdocbioctof A Test Je———p Restow oblect of test and Pesdixick

[Code Review je——b: Folow un of Code revewrests |

Offer information for Test desian |

| Devetopment Test Case & Program <
% Floview of Test Case and Feedback |
h 4
1‘-& Follow up of Test resul

[Dymamic Testng
[Evahsation ahout Test resutt —l

Figure 2 API Test Activities After Implementing
Modified Static Tests

ul

2 S8 A 34 E A 3073

We carried out code reviews prior to test case

design, identified potential defects, supplied this

information to the development team, and then
carried out the tests after correcting the identified
defects.

Figure 1 depicts the major activities of API test
before implementing procedures of static testing,
and Figure 2 shows about activities after imple-
menting modified procedures of static testing.

3.3 The result of Test effectiveness improve-

ment by code review

Through the analysis of the first test results
(Table 3), we identified pre-detectable errors like
return value error according to the modified test
processes described in Figure 2, carried out code
reviews prior to test activities, and eliminated
unnecessary test to raise the effectiveness of these
tests. At this point, based on the analysis of prior
faults, we also produced a checklist for repetitive
problems so code review can be carried out more
effectively. Table 4 is a checklist of items inspected
by the test team.

After carrying out the static tests by code
review based on the major review items suggested
in table 4, a total of 59 errors were identified as
follows: 3 memory release errors, 43 data validity
verification errors, 5 repetition errors, 1 unnecessary
condition error, and 7 return value errors for
exception handling function. Those errors related
return value error and halt under operation. We
identified defects to the

development team, designed test cases, and carried

provided feedbacks for

out the dynamic test on the corrected code.
Especially in case of halt error have an effect on
testing time. If we didn’'t code review, many time
After
comparing current results to previous test results,

and effort are needs for dynamic test.

return value error reduce from 24% to 14% in total
defect (42% improvement). And Halt errors reduce
from 51% to 22% (about 57% improvement) as
shown in Table 5.

Table 3 Analysis of Defect (Before)

efect Type Function Error Return Value Error Display Error | Halt During Operation Total
Number of Defects 62 97 35 204 398
% 16% 249 9% 51% 100%

FA H2EE 53 AT E0] HAE A& Fd B Al 7

Table 4 Check point in Review

217

Type

Check item

Comment

Does the API module have a header at the start of the file?

Are complicated algorithms and limited conditions sufficiently explained?

Is there an explanation on codes with comments?

Exception Handling

Is Assertion used for valid values or ranges?

Are errors being handled appropriately every time a function returns?

Do resources and memory get released every time an error occurs?

Is appropriate error handling codes returned from call functions when an internal error occurs?

Does it check for out of bound for all used arrays?

Resource Leak

Does all memory used internally get released?

Control Structure

Is termination condition of loops accurate?

Was there a repetitive or unnecessary condition applied?

Is there reiteration of excessive condition or a need for re-construction?

Table 5 Comparative Analysis of defects

Defect Ty Halt During

. Total
Operation ©

Function Error | Return Value Error| Display Error

Before

Number of Defect 62 97 35

204 398

Percent (%)

16% 24% 9% 51% 100%

After

Number of Defect 63 14

N/A 22 9

Percent (%)

64% 14% N/A. 22% 100%

Checklist items are errors typically made by
developers. Therefore, if checklist items are applied
to coding standard or as basic review items,
checklist items can be used as an effective tool in
enhancing development activities. In the future, the
items will be applied to coding standards so that
developers can use them as a reference when
coding. We also plan to reduce the re-working load

of the development team through code inspection.

4. Conclusions

As can be learned from the previously introduced
IBM case, it is necessary to systematically develop
and start test activities from early stages of
development simultaneously for effective testing. We
can efficiently achieve the quality through dynamic
testing by reviewing major stages and identifying
errors in advance. This study focused on reviews
and inspections, and teaming testers with deve-
lopers, as noted in the best practices suggested by
IBM. Also, by using code quality metrics to create
risk-based test scopes and deciding level of test
case design, we attempted to increase the overall
effectiveness of testing activities.

Review activities are very effective methods for
preventing product defects during development. It is

also a very important activity in terms of test, as
proved in suggested sample study case. Test team
provides defect types from test results analysis,
which can be pre-identified and improved during
developing procedures, and preventing methods to
development team. Then it will greatly improve
effectiveness and quality of overall development.
There are various ways to improve quality and
productivity. We must concern that productivity can
be debilitated
considering the organization and the specifics of the

if practices are applied without
project. Therefore, it is very important to decide
what is most needed, and this can be best done by
In this study,
effectiveness

analyzing the current status. we

showed practice to improve test
through reinforcement of static tests such as code
reviews and code analysis. We plan to continuously
attempt practical approach so that test can be
carried out more effectively through the analysis of
various factors related to test activity and test

productivity.

References

[1] 3=, A4, software test Y&, VI Land, 2004.
[2]1 W.S.Humphrey, Managing the Software Process,
Addison-Wesley, 1990.

218

[3]

(4]

[5]

{61l

[7]

[8]

(9]

[10]

[11]

[12]

[13]

(14}

15]

{16}

(171

(18]

CEELE I

ME Fagen, "Advances in Software Inspection,”
IEEE transactions on Software Engineering, Vol
12, issue 7, pp.744-751, 1986.

D.Graham, Software Inspection, Addison-Wesley,
1993.

B.Hailpern, P.Santhanam,
testing, and verification,”
Voldl, No.l1, pp.4-12, 2002.
R. S. Pressman, Software Engineering: A Prac-
titioner’'s Approach, McGraw-Hill, New York, 1992.
Ram Chillarege, "Software Testing Best Practices,”
IBM Technical Report RC 21457, Center for Soft-
ware Engineering IBM Research, 1999.

M.E.Fagen, "Design and code inspections to
reduce errors in program development,” IBM
Systems Journal, Vol.15, pp.182-211, 1976.

D. Winkler, S. Biffl, B. Ried!, "Improvement of
Design Specifications with Inspection. and Tes-
ting,” Proc. Of Euromicro 05, pp.222-230, 2005.

O. Laitenberger, "Studying the Effects of Code
Inspection and Structural Testing on Software
Quality,” Proc. 9th Int'l Symp. Software Reli-
ability Eng., IEEE CS Press, pp. 237-246, 1998.
V.R. Basili, RW. Selby, Comparing the effec-
tiveness of software testing techniques. IEEE
Transactions on Software Engineering, pp.1278-
1296, December 1987.

B. Beizer, Software Testing Techniques. Interna-
tional Thomson Publishing Inc., 2nd edition, 1990.
M.Wood, M.Roper, A.Brooks, and J. Miller, Com-
paring and Combining Software Defect Detection
Techniques: A Replicated Empirical Study, in
Proceedings of the 6th European Software
Engineering Conference, pp.262-277, 1997.

C. Michael, S.R. Lavenhar, Source code analysis
tools overview. https://buildsecurityin.uscert.gov/
portal/article/tools/code_analysis/overview.xml,
September 2005. Published via the U.S. Depart-
ment of Homeland Security Build Security In
website.

B. Chess, G. McGraw. Static analysis for security.
Security & Privacy Magazine, IEEE, pp.76-79,
2004.

M.Pizza, L.Strigini , "Comparing the effectiveness
of testing methods in improving programs: the
effect of variations in program quality,” Proc.
Ninth International Symposium on Software
Reliability Engineering, ISSRE ‘98, Paderborn,

"Software debugging,
IBM System Journal,

Germany, [EEE Computer Society Press, pp.
144-153, 1998.
P. Frankl, O. Iakounenko, “Further Empirical.

Studies of Test Effectiveness,” SIGSOFT 98, Nov,.
pp.153~162, 1998.

Y.Chernak, "Validating and Improving Test-Case
Effectiveness,” IEEE Software, January-February,
pp.81-86, 2001.

AZTES O 2 S8 A MU A A 3 E(Q07.3)

[19] D.Brand, “"A Software Falsifier,” Proceedings, Ele-
venth IEEE International Symposium on Software
Reliability Engineering, San Jose, CA, pp.174-185,
2000.

McCabe, A Complexity Measure, IEEE Transactions
On Software Engineering, VolSe~2, No.4,
December, pp.308-320, 1976.

[20]

.. HEY

? 1999 Dept. of Multimedia, SangMyung
Univ. Graduate School of Information
and Telecommunications(Master). 2000~

T,
.y

) -;*. \i 2002 Dept. of Computer Science,
o SangMyung Univ. Graduate School
s (Completion of Ph.D Courses). 2002~

2004 Software Strategy Gr. Digital Media Laboratory
of LG Electronics (Manager). 2005~Present Software
Engineering Gr. Software & Solution Center of LG

Electronics (Senior Research Engineer). Research

Interests: Software Quality, Software Process, Software
Usability Evaluation,
Metric

Software Testing, Software

gy F
1985 Seoul National Univ. Dept of com-—
puter science (Bachelor). 1987 Seoul
National Univ. Dept of computer
science (Master). 1992 University of
South Florida. Dept of computer
. engineering (Ph.D). 2001 ~Present
Chairman of SITRI (System Integration Technology
Research Institute). 2003 Executive Director of KIPA
(Korea IT Inductry promotion Agency) in KSI(Korea
Software Institute). 2004~2005 Dean of SangMyung
University School of Software. 1993~Present Sang
Myung University School of Software(Professor).
Research Interests: Software Process, Software Quality,
Software Usability Evaluation etc.

