DOI QR코드

DOI QR Code

Repression of γ-Glutamylcysteine Synthetase and Glutathione S-Transferases by Metformin, an Anti-diabetic Agent, in H4IIE Rat Hepatocytes

  • Bae, Eun-Ju (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Cho, Min-Joo (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Sang-Geon (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Published : 2007.06.30

Abstract

Metformin is a drug used to lower blood sugar levels in patients with type 2 diabetes via activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK). The primary objective of this study was to investigate whether metformin at the pharmacologically effective concentrations affects the expressions of ${\gamma}$-glutamylcysteine synthetase and phase II antioxidant genes in the H4IIE cell. Treatment of the cells with either metformin or 5-aminoimidazole-4-carboxamide riboside (AICAR) abrogated tert-butylhydroxyquinone (t-BHQ) induction of ${\gamma}$-glutamylcysteine synthetase, a rate limiting enzyme of GSH synthesis. The ability of t-BHQ to induce glutathione S-transferases (GSTs), a major class of phase II detoxifying enzymes that playa critical role in protecting cells from oxidative stress or electrophiles, was also inhibited by the agents. Transcriptional gene repression by metformin was verified by the GSTA2 promoter luciferase assay. Moreover, either metformin or AICAR treatment significantly decreased t-BHQ-dependent induction of other GSTs (i.e., $GST{\mu}$ and $GST{\pi}$ forms). Taken together, our data indicate that metformin treatment may result in the repression of ${\gamma}$-glutamylcysteine synthetase and glutathione S-transferase genes possibly via AMPK activation.

Keywords

References

  1. Bae, E.J., Cho, M.J. and Kim, S.G. (2007). Metformin prevents an adaptive increase in GSH and induces apoptosis under the conditions of GSH deficiency in H4IIE cells. J. Toxicol. Environ. Health, in press
  2. Bolton, J.L., Thompson, J.A., Allentoff, A.J., Miley, F.B. and Malkinson, A.M. (1993). Metabolic activation of butylated hydroxytoluene by mouse bronchiolar Clara cells. Toxicol. Appl. Pharmacol., 123, 43-49 https://doi.org/10.1006/taap.1993.1219
  3. Hardie, D.G. (2003). Minireview, The AMP-activated protein kinase cascade, the key sensor of cellular energy status. Endocrinology, 144, 5179-5183 https://doi.org/10.1210/en.2003-0982
  4. Hermann, L.S. (1979). Metformin, a review of its pharmacological properties and therapeutic use. Diabet. Metab., 5, 233-245
  5. Jeyapaul, J. and Jaiswal, A.K. (2000). Nrf2 and c-Jun regulation of antioxidant response element (ARE)-mediated expression and induction of ${\gamma}$-glutamylcysteine synthetase heavy subunit gene. Biochem. Pharmacol., 59, 1433- 1439 https://doi.org/10.1016/S0006-2952(00)00256-2
  6. Kang, K.W., Ryu, J.H. and Kim, S.G. (2000). The essential role of phosphatidylinositol 3-kinase and of p38 mitogenactivated protein kinase activation in the antioxidant response element-mediated rGSTA2 induction by decreased glutathione in H4IIE hepatoma cells. Mol. Pharmacol., 58, 1017-1025 https://doi.org/10.1124/mol.58.5.1017
  7. Kang, K.W., Cho, M.K., Lee, C.H. and Kim, S.G. (2001). Activation of phosphatidylinositol 3-kinase and Akt by tertbutylhydroquinone is responsible for antioxidant response element-mediated rGSTA2 induction in H4IIE cells. Mol. Pharmacol., 59, 1147-1156 https://doi.org/10.1124/mol.59.5.1147
  8. Kang, K.W., Lee, S.J., Park, J.W. and Kim, S.G. (2002). Phosphatidylinositol 3-kinase regulates nuclear translocation of NF-E2-related factor 2 through actin rearrangement in response to oxidative stress. Mol. Pharmacol., 62, 1001-1010 https://doi.org/10.1124/mol.62.5.1001
  9. Kang, K.W., Cho, I.J., Lee, C.H. and Kim, SG. (2003). Essential role of phosphatidylinositol 3-kinase-dependent CCAAT/ enhancer binding protein beta activation in the induction of glutathione S-transferase by oltipraz. J. Natl. Cancer. Inst., 95, 53-66 https://doi.org/10.1093/jnci/95.1.53
  10. Kefas, B.A., Cai, Y., Heimberg, H., Hue, L., Pipeleers, D. and VanCasteele, M. (2003). AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. J. Mol. Endocrinol., 30, 151-161 https://doi.org/10.1677/jme.0.0300151
  11. Kefas, B.A., Cai, Y., Kerckhofs, K., Ling, Z., Martens, G., Heimberg, H., Pipeleers, D. and Van de Casteele, M. (2004). Metformin-induced stimulation of AMP-activated protein kinase in beta-cells impairs their glucose responsiveness and can lead to apoptosis. Biochem. Pharmacol., 68, 409-416 https://doi.org/10.1016/j.bcp.2004.04.003
  12. Kemp, B.E., Stapleton, D., Campbell, D.J., Chen, Z.P., Murthy, S., Walter, M., Gupta, A., Adams, J.J., Katsis, F., Van- Denderen, B., Jennings, I.G., Iseli, T., Michell, B.J. and Witters, L.A. (2003). AMP-activated protein kinase, super metabolic regulator. Biochem. Soc. Trans., 31, 162-168 https://doi.org/10.1042/BST0310162
  13. Klepser, T.B. and Kelly, M.W. (1997). Metformin hydrochloride, an antihyperglycemic agent. Am. J. Health Syst. Pharm., 54, 893-903
  14. Meisse, D., VanCasteele, M., Beauloye, C., Hainault, I., Kefas, B.A., Rider, M.H., Foufelle, F. and Hue, L. (2002). Sustained activation of AMP activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Lett., 526, 38-42 https://doi.org/10.1016/S0014-5793(02)03110-1
  15. Ogasawara, T., Hoensch, H. and Ohnhaus, E.E. (1985). Distribution of glutathione and its related enzymes in small intestinal mucosa of rats. Arch. Toxicol. Suppl., 8, 110- 113
  16. Park, E.Y., Cho, I.J. and Kim, S.G. (2004). Transactivation of the PPAR-responsive enhancer module in chemopreventive glutathione S-transferase gene by the peroxisome proliferator-activated receptor-$\gamma$ and retinoid X receptor heterodimer. Cancer Res., 64, 3701-3713 https://doi.org/10.1158/0008-5472.CAN-03-3924
  17. Park, I.N., Cho, I.J. and Kim, S.G. (2004). Ceramide negatively regulates glutathione S-transferase gene transactivation via repression of hepatic nuclear factor-1 that is degraded by the ubiquitin proteasome system. Mol. Pharmacol., 65, 1475-1484 https://doi.org/10.1124/mol.65.6.1475
  18. Paulson, K.E., Darnell, J.E. Jr., Rushmore, T. and Pickett, C.B. (1990). Analysis of the upstream elements of the xenobiotic compound-inducible and positionally regulated glutathione S-transferase Ya gene. Mol. Cell. Biol., 10, 1841-1852 https://doi.org/10.1128/MCB.10.5.1841
  19. Pinkus, R., Weiner, L.M. and Daniel, V.J. (1996). Role of oxidants and antioxidants in the induction of AP-1, NF-$\kappa$B, and glutathione S-transferase gene expression. J. Biol. Chem., 271, 13422-13429 https://doi.org/10.1074/jbc.271.23.13422
  20. Polekhina, G., Gupta, A., Michell, B.J., van Denderen, B., Murthy, S., Feil, S.C., Jennings, I.G., Campbell, D.J., Witters, L.A., Parker, M.W., Kemp, B.E. and Stapleton, D. (2003). AMPK beta subunit targets metabolic stress sensing to glycogen. Curr. Biol., 13, 867-871 https://doi.org/10.1016/S0960-9822(03)00292-6
  21. Primiano, T., Egner, P.A., Sutter, T.R., Kelloff, G.J., Roebuck, B.D. and Kensler, T.W. (1995). Intermittent dosing with oltipraz, relationship between chemoprevention of aflatoxininduced tumorigenesis and induction of glutathione Stransferases. Cancer Res., 55, 4319-4324
  22. Stephen, N.D., Insulin, oral hypoglycemic agents, and the pharmacology of the endocrine pancreas. In, Laurence, L.B., John, S.L., Keith, L.P., eds. Goodman & Gilman's The Pharmacological Basis of Therapeutics. 11th Edition. New York, McGraw-Hill (2006). pp. 1613-1646
  23. Villafania, A., Anwar, K., Amar, S., Chie, L., Way, D., Chung, D.L., Adler, V., Ronai, Z., Brandt-Rauf, P.W., Yamaizumii, Z., Kung, H.F. and Pincus, M.R. (2000). Glutathione-STransferase as a selective inhibitor of oncogenic ras-p21- induced mitogenic signaling through blockade of activation of Jun by Jun-N-terminal kinase. Ann. Clin. Lab. Sci., 30, 57-64
  24. Viollet, B., Andreelli, F., Jorgensen, S.B., Perrin, C., Geloen, A., Flamez, D., Mu, J., Lenzner, C., Baud, O., Bennoun, M., Gomas, E., Nicolas, G., Wojtaszewski, J.F., Kahn, A., Carling, D., Schuit, F.C., Birnbaum, M.J., Richter, E.A., Burcelin, R. and Vaulont, S. (2003). The AMP-activated protein kinase alpha2 catalytic subunit controls wholebody insulin sensitivity. J. Clin. Invest., 11, 91-98
  25. Wilcock, C., Wyre, N.D. and Bailey, C.J. (1991). Subcellular distribution of metformin in rat liver. J. Pharm. Pharmacol., 43, 442-444 https://doi.org/10.1111/j.2042-7158.1991.tb03507.x
  26. Wilcock, C. and Bailey, C.J. (1994). Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica, 24, 49-57 https://doi.org/10.3109/00498259409043220