개에서 Poly-L-lactic-acid 이식물의 생분해성과 생체적합성에 관한 연구

Study of Bio-absorbability and Bio-compatibility of Poly-L-lactic-acid Implant in Dogs

  • 박보영 (경상대학교 수의과대학 동물의학연구소) ;
  • 김영기 (경상대학교 수의과대학 동물의학연구소) ;
  • 박종윤 (경상대학교 의과대학) ;
  • 박종만 (경상대학교 공과대학) ;
  • 고필옥 (경상대학교 수의과대학 동물의학연구소) ;
  • 장홍희 (경상대학교 수의과대학 동물의학연구소) ;
  • 이희천 (경상대학교 수의과대학 동물의학연구소) ;
  • 이효종 (경상대학교 수의과대학 동물의학연구소) ;
  • 연성찬 (경상대학교 수의과대학 동물의학연구소)
  • Park, Po-Young (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Kim, Young-Ki (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Bahk, Jong-Yoon (Department of Urology, Gyeongsang Nationai University Medical School) ;
  • Park, Joung-Man (School of Materials Science & Engineering, Gyeongsang National University) ;
  • Koh, Phil-Ok (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Chang, Hong-Hee (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Hee-Chun (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Hyo-Jong (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Yeon, Seong-Chan (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University)
  • 발행 : 2007.06.30

초록

Bioabsorbable devices have been utilized and experimented in many aspects of orthopaedic surgery. Depending upon their constituent polymers, these materials can be tailored to provide sufficient rigidity to allow bone healing, retain mechanical strength for certain period of time, and then eventually begin to undergo degradation. The objective of this study was to estimate extent in which Poly-L-latic acid (PLLA) implants had bioabsorbability and biocompatibility with bone and soft tissue in dogs and also to develop bioabsorbable, biocompatible materials with the appropriate strength and degradation characteristics to allow for regular clinical use for treating orthopedic problems in humans as well as animals. Eighteen dogs were used as experimental animals and were inserted two types of PLLA implants. PLLA rods were inserted into subcutaneous tissue of back or the abdomen wall. And the rods were tested for material properties including viscosity, molecular weight, melting point, melting temperature, crystallinity, flexural strength, and flexural modulus over time. PLLA screws were inserted through cortical bone into bone marrow in the femur of the dogs and stainless steel screw was inserted in the same femur. Radiographs were taken after surgery to observe locations of screw. Histological variations including cortical bone response, muscular response, bone marrow response were analyzed over the time for 62weeks. The physical properties of PLLA rods had delicate balances between mechanical, thermal and viscoelastic factors. PLLA screws did not induce any harmful effects and clinical complications on bone and soft tissue for degradation period. These results suggest that PLLA implants could be suitable for clinical use.

키워드

참고문헌

  1. Andriano KP, Wenger KH, Daniels AU(Dan), Heller J. Technical Note: Biomechanical Analysis of Two Absorbabler Fracture Fixation Pins After Long-Term Canine Implantation. J Biomed Mater Res (Appl Biomater)1999; 48: 528-533 https://doi.org/10.1002/(SICI)1097-4636(1999)48:4<528::AID-JBM19>3.0.CO;2-F
  2. An YH, Woolf SK, Friedman RJ. Pre-clinnical in vivo evaluation of orthopaedic bioabsorbable devices. Biomaterials 2000; 21: 2635-2652 https://doi.org/10.1016/S0142-9612(00)00132-0
  3. Choi YD, Kim SY, Moon MH, Kim SH, Lee KS, Byun YR. Poly(ethylene glycol)-poly(L-lactide) diblock copolymer prevents aggregation of poly(L-lactide) microspheres during ethylene oxide gas sterilization. Biomaterials 2001; 22: 9951004 https://doi.org/10.1016/S0142-9612(00)00265-9
  4. Fossum M, Nordenskjold A, Kratz G. Engineering of Multilayered Urinary Tissue in Vitro. Tissue Eng 2004; 10(1)/ 2: 175-180 https://doi.org/10.1089/107632704322791826
  5. Goh JCH, Shah KM, Bose K. Biomechanical study on femoral neck fracture fixation in relation to bone mineral density. Clin Biomech 1995; 10(6): 304-308 https://doi.org/10.1016/0268-0033(95)00033-H
  6. Heidemann W, Fischer JH, Koebke J, Bussmann C, Gerlach KL. In-vivo-Untersuchung zur Degradation von Polyu-(D,L-) Laktid-und Poly-(L-Laktid-co-Glykolid)-Osteosynthesematerial. Mund Kiefer GesichtsChir 2003; 7: 283-288 https://doi.org/10.1007/s10006-003-0492-x
  7. Hildebrandt P, Sayyad M, Rzany A, Schaldach M, Seiter H. Prevention of surface encrustation of urological implants by coating with inhibitors. Biomaterials 2001; 22: 503-507 https://doi.org/10.1016/S0142-9612(00)00217-9
  8. Hile DD, Doherty SA, Trantolo DJ. Prediction of Resorption Rates for Composite PolylactidelHydroxylapatite Internal Fixation Devices Based on Initial Degradation Profiles. J Biomed Mater Res Part B:Appl Biomater 2004; 71B: 201-205 https://doi.org/10.1002/jbm.b.30091
  9. Hodgskinson R, Currey JD. Young's modulus, density and material properties in cancellous bone over a large density range. J Mater Sci Mater Med 1992; 3: 377-381 https://doi.org/10.1007/BF00705371
  10. Kilicoglu O, Demirhan M, Akman S, Atalar AC, Ozsoy S, Ince U. Failure strength of bioabsorbable interference screws: effects of in vivo degradation for 12weeks. Knee Surg Sports Traumatol Arthrosc 2003; 11: 228-234 https://doi.org/10.1007/s00167-003-0359-6
  11. Laaksorvirta S, Laurila M, Isotalo T, Valimaa T, Teuvo L. Tammela J, TormaIa P, Talja M. Rabbit muscle and urethral in situ biocompatibility properties of the self-reinforced 1lactide- glycolic acid copolymer 80:20 spiral stent. J Urol 2002; 167: 1527-1531 https://doi.org/10.1016/S0022-5347(05)65357-8
  12. Laaksovirta S, Talja M, Valimaa T, Isotalo T, Tormala P, Tammela RLJ. Expansion and bioabsorption of the selfreinforced lactic and glycolic acid copolymer prostatic spiral stent. J Urol 2001; 166: 919-922 https://doi.org/10.1016/S0022-5347(05)65864-8
  13. Leinonen S, Tiainen H, Kellomki M, Tormala P, Waris T, Ninkovic M, Ashammakhi N. Holding power of Bioabsorbable Self-Reinforced Poly-LIDL-Lactide 70/30 Tacks and Miniscrews in Human Cadaver Bone. J Craniofac Surg 2003; 14(2): 171 https://doi.org/10.1097/00001665-200303000-00007
  14. Liatsikos EN, Dinlenc CZ, Kapoor R, Bernardo NO, Pikhasov D, Anderson AE , Smith AD. Ureteral Reconstruction: Small intestine submusosa for the management of strictures and defects ofthe upper third ofthe ureter. J Urol 2001; 165: 1719-1723 https://doi.org/10.1016/S0022-5347(05)66401-4
  15. Lumiaho J, Antero Heino A, Tunninen V, Ala-Opas M, Talja M, Valimaa T, TormaIa P. New Bioabsorbable Polylactide Ureteral Stent in the Treatment of Ureteral Lesions: An experimental Study. J Endourol 1999; 13 (2): 107-112 https://doi.org/10.1089/end.1999.13.107
  16. Malhan K, Kumar A, Rees D. Tibial cyst formation after anterior cruciate ligament reconstruction using a new bioabsorbable screw. The Knee 2002; 9: 73-75 https://doi.org/10.1016/S0968-0160(01)00109-0
  17. Manninen MJ, Pivrinta U, Ptil H, Rokkanen P, Taurio R, Tamminmki M, TormaIa P. Shear strength of cancellous bone after osteotomy fixed with absorbable self-reinforced polyglycolic acid and poly-L-lactic acid rods. J Mater Sci Mater Med 1992; 3: 245-251 https://doi.org/10.1007/BF00705288
  18. Manninen MJ, Pohjonen T. Intramedullary nailing of the cortical bone osteotomies in rabbits with self-reinforced polyL- Iactide rods manufactured by the fibrillation method. Biomaterials 1993; 14(4): 305-312 https://doi.org/10.1016/0142-9612(93)90123-J
  19. Matsusue Y, Yamamuro T, Oka M, Shikinami Y, Hyon SH, Ikada Y. In vitro and in vivo studies on bioabsorbable ultrahigh- strength poly(L-lactide) rods. J Biomed Mater Res 1992 26: 1553-1567 https://doi.org/10.1002/jbm.820261203
  20. Maurer P, Holweg S, Knoll W-D, Schubert J. Study by finite element method of the mechanical stress of selected biodegradable osteosynthesis screws in sagittal ramus osteotomy. Br J Oral Maxillofac Surg 2002; 40: 76-83 https://doi.org/10.1054/bjom.2001.0752
  21. Mazzonetto R, Paza AO, Spagnoli DB. A retrospective evaluation of rigid fixationin orthognathic surgery using a biodegradable self-reinforced (70L:30DL)polyactide. Int. J. Oral Maxillofac Surg 2004; 33: 664-669 https://doi.org/10.1016/j.ijom.2004.02.001
  22. Nordstrom P, Pohjonen T, Tormala P, Rokkanen P. Shear-load carrying capacities of the distal rat femora after osteotomy fixed with self-reinforced polyglycolic acid and poly-L-Iactic acid pins. J Mater Sci Mater Med 2002; 13: 65-68 https://doi.org/10.1023/A:1013638620614
  23. Pohjonen T, Helevirta P, TormaIa P, Koskikare K, Patiala H, Rokkanen P. Strength retention of self-reinforced poly-Llactide screws. A comparison of compression moulded and machine cut screws. J Mater Sci Mater Med 1997; 8; 311-320 https://doi.org/10.1023/A:1018516529591
  24. Prokop A, Jubel A, Hahn U, Dietershagen M, Bleidistel M, Peters C, Hoft A, Rehm KE. A comparatice radiological assessment of polylactide pins over 3 years in vivo. Biomaterials 2005; 26: 4129-4138 https://doi.org/10.1016/j.biomaterials.2004.10.031
  25. Rubel IF, David Seligson, Lai JL, Voor MJ, Wang M. Pullout Strengths of Self-Reinforced Poly-L-Lactide(SR-PLLA)Rods Versus Kirschner Wires in Bovine Femur. J Orthop Trauma 2001; 15(6): 429-432 https://doi.org/10.1097/00005131-200108000-00008
  26. Saikku-Backstrom A, Tulamo R-M, Rih JE, Kellomki M, Toivonen T, TormaIa P, Rokkanen P. Intramedullary fixation of cortical bone osteotomies with absorbable self-reinforced fibrillated poly-96L/4D-lactide(SR- PLA96)rods in rabbits. Biomaterials 2001; 22: 33-43 https://doi.org/10.1016/S0142-9612(00)00142-3
  27. Saito T, Iguchi A, Sakurai M, Tabayashi K. Biomechanical Study of a Pily-L-Lactide(PLLA) Sternal Pin in Sternal Closure After Cardiothoracic Surgery. Ann Thorac Surg 2004; 77: 684-687 https://doi.org/10.1016/S0003-4975(03)01341-9
  28. Selvan VT, Oakley MJ, Rangan A, AI-Iami MK. Optimum configuration of cannulated hip screws for the fixation of intracapsular hipfractures: a biomechanical study. Injury 2004; 35: 136-141 https://doi.org/10.1016/S0020-1383(03)00059-7
  29. Serlo W, Ashammakhi M, TormaIa P, Waris T. A New Technique for Cranial Bone Osteoftxation: Use of Bioabsorbable Tacks and Plates to Fix Parietal Bone Split Gragts Used for Reconstruction of a Posttraumatic Frontal Bone Defect. J Craniofac Surg 2002; 13(2): 331-336 https://doi.org/10.1097/00001665-200203000-00031
  30. Shikinami Y, Okuno M. Mechanical evaluation of novel spinal interbody fusion cages made of bioactive, resorbable composites. Biomaterials 2003; 24: 3161-3170 https://doi.org/10.1016/S0142-9612(03)00155-8
  31. Stendel R, Krischek B, Pietil TA. Biodigradable Implants in Neurosurgery. Acta Neurochir(Wien) 2001; 143: 237-243 https://doi.org/10.1007/s007010170103
  32. Suuronen R, Wessman L, Mero M, TormaIa P, Vasenius J, Partio E, Vihtonen K, Vainionpaa S. Comparison of shear strength of osteotomies fixed with absorbable self-reinforced poly-L-Iactide and metallic screws. J Mater Sci Mater Med 1992; 3: 288-292 https://doi.org/10.1007/BF00705295
  33. Suuronen R, Pohjonen T, Taurio R, TormaIa P, Wessman L, Ronkko K, S. Vainionpaa. Strength retention of self-reinforced poly-L-lactide screws and plates: an in vivo and in vitro study. J Mater Sci Mater Med 1992; 3: 426-431 https://doi.org/10.1007/BF00701239
  34. Tiainen J, Soini Y, TormaIa P, Waris T, Ashammakhi N. SelfReinforced PolylactidelPolyglycolide 80120 Screws Take More Than 1Years to Resorb in Rabbit Cranial Bone. 2004 Wiley Periodicals, Inc. J Biomed Mater Res; Part B ApplBiomater 2004; 70B:49-55 https://doi.org/10.1002/jbm.b.30013
  35. Tuomo P, Matti L, Ptil Hannu, Pentti R, Henna N, Perti T. Fixation of distal femoral osteotomies with self-reinforced poly(L/DL)lactied 70:30/bioactive glass compositereds. An experimental study on rats. J Mater Sci Mater Med 2004; 15: 275-281 https://doi.org/10.1023/B:JMSM.0000015488.11602.4e
  36. Vert M, Li SM, Spenlehauer G, Guerin P. Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 1992; 3: 432-446 https://doi.org/10.1007/BF00701240
  37. Waris E, Ashammakhi N, Happonen H, Raatikainen T, Kaarela O, Tormala P, Santavirta S, Konttinen YT. Bioabsorbable Miniplating Versus Metallic Fixation for Metacarpal Fractures. Clin Orthop Rei Res 2003; 410: 310-319 https://doi.org/10.1097/01.blo.0000063789.32430.c6
  38. Widmer MS, Gupta PK, Lu L, Meszlenyi RK, Evans GRD, Brandt K, Savel T, Gurlek A, Patrick Jr CW, Mikos AG Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials 1998; 19: 1945-1955 https://doi.org/10.1016/S0142-9612(98)00099-4